Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Environ Toxicol Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923588

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are a group of widely used chemicals added to a variety of consumer (e.g., plastics) and industrial (e.g., metal coating) goods. Although detected globally as an environmentally persistent pollutant, BUVSs have received relatively little toxicological attention and only recently have been acknowledged to affect development and the endocrine system in vivo. In our previous study, altered behavior, indicative of potential neurotoxicity, was observed among rainbow trout alevins (day 14 posthatching) that were microinjected as embryos with a single environmentally relevant dose of 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) phenol (UV-327). In the present follow-up study, we performed whole-transcriptome profiling (RNA sequencing) of newly hatched alevins from the same batch. The primary aim was to identify biomarkers related to behavior and neurology. Dose-specifically, 1 to 176 differentially expressed genes (DEGs) were identified. In the group presenting altered behavior (273.4 ng g-1), 176 DEGs were identified, yet only a fraction was related to neurological functions, including water, calcium, and potassium homeostasis; acetylcholine transmission and signaling; as well insulin and energy metabolism. The second objective was to estimate the transcriptomic point of departure (tPOD) and assess if point estimate(s) are protective of altered behavior. A tPOD was established at 35 to 94 ng UV-327 g-1 egg, making this tPOD protective of behavioral alterations. Holistically, these transcriptomic alterations provide a foundation for future research on how BUVSs can influence rainbow trout alevin development, while providing support to the hypothesis that UV-327 can influence neurogenesis and subsequent behavioral endpoints. The exact structural and functional changes caused by embryonic exposure to UV-327 remain enigmatic and will require extensive investigation before being deciphered and understood toxicologically. Environ Toxicol Chem 2024;00:1-12. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Drug Chem Toxicol ; : 1-12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738628

RESUMO

Bio-sourced insect repellents are becoming more popular due to their safer applications. Known for its strong fly-repellent property, Cis, trans-para-menthane-3,8-diol (PMD) is the main component of the lemon eucalyptus essential oil and is synthesized from citronellal. In April 2005, US Centers for Disease Control approved two fly repellents that do not contain N,N-diethyl-meta-toluamide (DEET), including PMD. Due to the intentional and pervasive human exposure caused by DEET as insect repellent, concerns have been raised about its toxicological profile and potential harm to people. We hypothesized PMD would have a different toxicological profile than DEET. We synthesized PMD from Eucalyptus citriodora using green chemistry methods and analyzed its structures by 1H-NMR,13C-NMR, and GC/MS spectral methods. We used MTS assay to determine the percentage inhibition of PMD and DEET on keratinocyte (human epidermal keratinocyte [HaCaT]) cells. The xCelligence system was used and followed at real time. Effects of PMD and DEET on zebrafish embryo development were monitored and levels of lipid peroxidation, glutathione-S-transferase (GST), superoxide dismutase (SOD), and acetylcholinesterase (AchE) were evaluated at 72 h post-fertilization using spectrophotometric methods. Our results showed that while DEET inhibited human keratinocyte cell growth, while imporved cell viability and proliferation was exposed in PMD exposed group. In zebrafish embryos, PMD was less toxic in terms of development, oxidant-antioxidant status, and AChE activities than DEET. Based on these results we suggest an efficient method using green chemistry for the synthesis of PMD, which is found to be less toxic in zebrafish embryos and human keratinocyte cells.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675418

RESUMO

The synthesis of a series of new N-benzylidene derivatives of 3-amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine 10(a-l) bearing two points of molecular diversity is reported. These new compounds were synthesized in five steps including two steps under microwave dielectric heating. They were fully characterized using 1H and 13C NMR, FTIR and HRMS. The in silico physicochemical properties of compounds 10(a-l) were determined according to Lipinski's rules of five (RO5) associated with the prediction of their bioavailability. These new compounds 10(a-l) were tested for their antiproliferative activities in fibroblasts and eight representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3, MCF7 and PANC1). Among them, the compounds 10h and 10i showed sub-micromolar cytotoxic activity on tumor cell lines (0.23 < IC50 < 0.3 µM) and no toxicity on fibroblasts (IC50 > 25 µM). A dose-dependent inhibition of Store-Operated Ca+2 Entry (SOCE) was observed in the HEK293 cell line with 10h. In vitro embryotoxicity and angiogenesis on the mCherry transgenic zebrafish line showed that 10h presented no toxic effect and no angiogenic effect on embryos with a dose of 5 µM at 72 hpf.

4.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558477

RESUMO

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Embrião não Mamífero , Testes de Toxicidade , Poluentes Químicos da Água , Animais , Testes de Toxicidade/métodos , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alternativas aos Testes com Animais , Cyprinidae , Crustáceos/efeitos dos fármacos , Compostos de Anilina/toxicidade , Peixes
5.
Data Brief ; 54: 110324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38550236

RESUMO

This study aimed to contribute to the development of an embryo-test using the gastropod Lymnaea stagnalis, identified by the Organization for Economic Co-operation and Development (OECD) as a potential invertebrate test animal model. Together with the Potamopyrgus antipodarum, were the first mollusc models to be included in the organization testing guidelines. The focus was on validating an embryo toxicity test to cover the sensitive embryogenesis phase and on obtaining testing information on all of the model life cycle stages, contributing to close an identified gap within this context. Adhering to OECD guidelines, namely the L. stagnalis reproductive test, the study examined mortality rates, abnormality rates, development, growth, hatching rates, hearth rates, and pre-testing media suitability, during the embryogenesis, and the obtained dataset made available for further studies. Cadmium was chosen as the positive test compound due to its well-studied nature and the model's proven sensitivity to the compound, working as a reference compound for the test development. The data were collected in two 12-day assays under consistent conditions, each using 144 L. stagnalis embryos (<24 h old) from 6 egg masses (288 embryos total). Six 48-well microplates were utilized per assay, accommodating five different cadmium concentrations (32, 70, 155, 341, 750 µg/L) and a control group. Recorded parameters encompassed developmental stage, embryo position within the chorion, developmental abnormalities, hatchings, and mortality. Data analysis involved classifying embryos based on developmental stage and position, taking an exploratory approach to define the relevance of the different parameters in the compound hazard assessment during the embryogenesis. Measurements considered embryo area, perimeter, length, height, width, interocular distance, and heart rate. This dataset does not provide treated information but the raw data obtained during the proposed metodological development and toxicity testing process. The purpose of this article is to make the obtained raw data available, clearly defining the acquisition methodology to provide a comparison basis for future or existent works within this context.

6.
Drug Chem Toxicol ; : 1-10, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311823

RESUMO

Polydatin (3,4',5-trihydroxystilbene-3-ß-D-glucoside, piceid), a natural stilbenoid found in different plant sources, has gained increasing attention for its potential health benefits. However, prior to its widespread adoption in human therapeutics and consumer products, a comprehensive investigation of its toxicological effects is crucial. In this study, the toxicity of polydatin was investigated in a developmental toxicity test using zebrafish (Danio rerio) as a valuable model for preclinical assessments. We employed the Fish Embryo Test (FET test - OECD n°236) to investigate the effects of polydatin on survival, hatchability, development, and behavior of zebrafish embryo-larval stage. Remarkably, the results demonstrated that polydatin up to 435 µM showed no toxicity. Throughout the exposure period, zebrafish embryos exposed to polydatin exhibited normal development, with no significant mortality observed. Furthermore, hatching success and heartbeat rate were unaffected, and no morphological abnormalities were identified, signifying a lack of teratogenic effects and cardiotoxicity. Locomotion activity assessment revealed normal swimming patterns and response to stimuli, indicating no neurotoxic effects. Our study provides valuable insights into the toxicological profile of polydatin, suggesting that it may offer potential therapeutic benefits under a considerable concentration range. In addition, zebrafish model proves to be an efficient system for early-stage toxicological screening, guiding further investigations into the secure utilization of polydatin for human health and wellness.

7.
Environ Toxicol Pharmacol ; 106: 104372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244879

RESUMO

Interaction of nanoplastics (NPls) with other environmental contaminants could affect their uptake by the organisms and their toxicity. Thus, the present study aims to investigate the polystyrene NPls (44 nm) interaction with the antidepressant amitriptyline (AMI) and its toxicity to Danio rerio embryos. A similar toxicological profile for NPls + AMI exposure was found for most of the evaluated endpoints, comparing with AMI single exposure, showing that the presence of NPls did not modulate the AMI toxicity. However, the behavioral assessment showed a different pattern with hypoactivity for the NPls + AMI exposure (NPls - hyperactivity; AMI - no effect). Interaction effects between NPls and AMI were also found in the protein contents (antagonism) and in the total glutathione content (synergism). This study highlights the complexity and unpredictability of NPls interaction with pharmaceuticals, important for an accurate environmental risk assessment and for the developing of effective strategies and interventions against plastic pollution.


Assuntos
Amitriptilina , Poluentes Químicos da Água , Animais , Amitriptilina/toxicidade , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Poliestirenos/toxicidade
8.
Int J Biol Macromol ; 260(Pt 1): 129324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228210

RESUMO

In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 µg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 µg/mL and 79.13 µg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 µg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Humanos , Prata/química , Nanopartículas Metálicas/química , Peixe-Zebra , Células HeLa , Staphylococcus aureus , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química
9.
Toxicol Mech Methods ; 34(2): 203-213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849293

RESUMO

Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by 1H NMR, 13C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of nqO1, gfap, bdnf, vtg, egr, cyp1a, and igf2 were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.


Assuntos
Óleos Voláteis , Extratos Vegetais , Ácido Salicílico , Peixe-Zebra , Animais , Ácido Salicílico/toxicidade , Ácido Salicílico/metabolismo , Embrião não Mamífero , Queratinócitos , Salicilatos
10.
Environ Toxicol Pharmacol ; 102: 104244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572995

RESUMO

Cape Vultures (Gyps coprotheres) are a vulnerable Old-World Vulture species in southern Africa. Of the numerous threats to their survival, malicious and accidental poisonings remain a major concern. Despite the dangers of poisonings little is however known about the more insidious effects of toxins on egg survival, despite the species known to have a long generational length. For this study, an extensive literature review focusing on veterinary pharmaceuticals was undertaken. Literature for vultures was scarce, with most studies focusing on the domestic chicken. Using information for domestic chickens, the risk was characterised from likely vulture exposure to production animal carcasses with residues of said drugs. From this various antibiotics, medetomidine and albendazole were identified with embryotoxic or teratogenic effects. We suggest that these drugs be tested to elucidate their dose-response relationship and/or mitigation measures to minimise vulture exposure.


Assuntos
Falconiformes , Drogas Veterinárias , Animais , Drogas Veterinárias/toxicidade , Galinhas
11.
Artigo em Inglês | MEDLINE | ID: mdl-37488813

RESUMO

Hydroxychloroquine sulfate (HCQ) and chloroquine diphosphate (CQ) have been used at increased rates to treat COVID-19 but can constitute a potential environmental risk. The objective was to evaluate the toxicity of sublethal concentrations of HCQ and CQ in zebrafish embryos/larvae. The 50% lethal concentrations (LC50) of HCQ and CQ at 96 h post-fertilization (hpf) were calculated by testing various concentrations on 2,160 embryos. The LC50 obtained were 560 and 800 µM for HCQ and CQ, respectively. Next, the embryotoxicity assay was performed, where 1,200 embryos were subjected to sublethal concentrations of HCQ and CQ. The hatching and heart rates were recorded. After euthanasia, photomicrographs of all larvae were taken to measure the total length, pericardial and yolk sac areas. The embryos exposed to sublethal concentrations of HCQ and CQ showed delayed hatching at 72 hpf, as well as an increase in the heart rate, larger pericardial and yolk sac areas, and body malformations at 96 hpf. The findings show that HCQ and CQ are toxic to fish in the early development phases. Understanding the mechanisms of toxicity will help extrapolate the effects of 4-aminoquinoline derivatives when they reach the aquatic environment in the context of the COVID-19 pandemic.


Assuntos
COVID-19 , Hidroxicloroquina , Animais , Humanos , Hidroxicloroquina/farmacologia , Peixe-Zebra , Pandemias , Tratamento Farmacológico da COVID-19 , Larva
12.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298835

RESUMO

Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer's disease due to its AChE and AP inhibitory actions.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Animais , Inibidores da Colinesterase/química , Acetilcolina , beta Caroteno , Simulação de Acoplamento Molecular , Peixe-Zebra/metabolismo , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Preparações Farmacêuticas
13.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242444

RESUMO

One of the main bioactive compounds of interest from the Ulva species is the sulfated polysaccharide ulvan, which has recently attracted attention for its anticancer properties. This study investigated the cytotoxic activity of ulvan polysaccharides obtained from Ulva rigida in the following scenarios: (i) in vitro against healthy and carcinogenic cell lines (1064sk (human fibroblasts), HACAT (immortalized human keratinocytes), U-937 (a human leukemia cell line), G-361 (a human malignant melanoma), and HCT-116 (a colon cancer cell line)) and (ii) in vivo against zebrafish embryos. Ulvan exhibited cytotoxic effects on the three human cancer cell lines tested. However, only HCT-116 demonstrated sufficient sensitivity to this ulvan to make it relevant as a potential anticancer treatment, presenting an LC50 of 0.1 mg mL-1. The in vivo assay on the zebrafish embryos showed a linear relationship between the polysaccharide concentration and growth retardation at 7.8 hpf mL mg-1, with an LC50 of about 5.2 mg mL-1 at 48 hpf. At concentrations near the LC50, toxic effects, such as pericardial edema or chorion lysis, could be found in the experimental larvae. Our in vitro study supports the potential use of polysaccharides extracted from U. rigida as candidates for treating human colon cancer. However, the in vivo assay on zebrafish indicated that the potential use of ulvan as a promising, safe compound should be limited to specific concentrations below 0.001 mg mL-1 since it revealed side effects on the embryonic growth rate and osmolar balance.

14.
J Toxicol Environ Health A ; : 1-10, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185102

RESUMO

Chloramine T, a sodium p-toluene sulfonchloramide, is known to possess a wide spectrum of biocidal activity and is employed as a disinfectant in fish farms to treat bacterial infections. Although Chloramine T may effectively combat pathogens, the sublethal and lethal effects and changes in acetylcholinesterase (AChE) activity remain poorly elucidated using Danio rerio (zebrafish) embryos. Zebrafish is considered a model organism for toxicant screening research and exhibits mammalian-like physiological responses when exposed to environmental pollutants. The aim of this study was to (1) determine LC50 of Chloramine T after 96 hr exposure, (2) verify disinfectant effects on developmental morphology, and (3) evaluate the disinfectant effects on AChE activity in zebrafish embryos. Chloramine T exposure was performed using 16, 32, 64, 128, or 256 mg/L concentrations. The mortality LC50 values were 143.05 ± 3.11 and 130.97 ± 7.4 mg/L at 24 and 96 hr, respectively. Data demonstrated delayed hatching, reduced heartbeats, cardiac edema, and equilibrium disruption of hatched larvae throughout embryonic development. In addition, Chloramine T inhibited AChE activity at 64 or 128 mg/L after 96 hr treatment, corroborating the sub-lethality results observed in zebrafish embryo development and demonstrating an equilibrium disruption in zebrafish larvae.

15.
MethodsX ; 10: 102215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251652

RESUMO

Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) without a medical prescription and their frequent prevalence in aquatic habitats, there are major health and environmental issues. NSAIDs have been found in surface water and wastewater in concentrations ranging from ng/L to µg/L all over the world. The purpose of this study was to determine the relationship between NSAIDs (diclofenac, ketoprofen, paracetamol and ibuprofen) exposure and associated adverse effects in the assessment of indirect human health risks posed by Danio rerio (zebrafish) and Environmental Risk Assessment (ERA) of these NSAIDs in aquatic environments. Therefore, the objectives of this study were to (i) reveal abnormality endpoints of early developmental stages, after exposure of zebrafish and (ii) perform an ecological risk assessment of aquatic organisms upon exposure to NSAIDs detected in surface waters based on the risk quotients (RQs) method. According to the toxicity data collected, all of the malformations appeared after diclofenac exposure at all concentrations. The most notable malformations were the lack of pigmentation and an increase in yolk sac volume, with EC50 values of 0.6 and 1.03 mg/L, respectively. The results obtained for the ERA revealed RQs higher than 1 for all the four NSAIDs chosen, posing ecotoxicological pressure in aquatic environments. Overall, our findings provide a critical contribution to the formulation of high-priority actions, sustainable strategies and strict regulations that minimize the negative effects of NSAIDs on the aquatic ecosystem.•To determine the LC50, lethal conditions such as coagulation, absence of heartbeat and blood flow, absence of tail separation and development of somites were taken into account.•The EC50 was calculated using sublethal parameters such as blood coagulation, pericardial edema, yolk sac edema or hypertrophy.•The 4 compounds present a high risk individually and in mixture with a RQ >> 1.

16.
Saudi J Biol Sci ; 30(5): 103630, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37113475

RESUMO

Concerns associated with the use of synthetic colourants backs the demand for natural colourants. Thus, the current study aimed at characterizing crude fungal pigments produced by Penicillium multicolour, P. canescens, Talaromyces verruculosus, Fusarium solani and P. herquie. This included their antioxidant and antimicrobial properties together with acute toxicity evaluation on zebrafish embryos. The identification of pigment compounds was achieved through MS and IR data. The study demonstrated a substantial radical scavenging activity of extracts ranging from 65.49 to 74.46%, close to that of ascorbic acid (89.21%). Penicillium canescens and F. solani exhibited a strong antimicrobial activity against Escherichia coli and Enterococcus aerogenes and Salmonella typhi, Staphylococcus aureus and Bacillus cereus at MIC values ranging from 1.5 to 2.5 mg/mL. However, some levels of toxicity were observed for all extracts at a concentration range of 3-5 mg/mL. Pigment by P. multicolour, T. verruculosus and F. solani were tentatively identified through IR and MS data as sclerotiorin (yellow), rubropunctamine (red) and bostrycoidin (red). In conclusion, the study demonstrates a market potential of filamentous fungi pigments due to their antioxidant, antimicrobial activities, and prominent colours. Although there are some toxicity concerns, further tests must be done using molecular docking, albino mice and cell linings.

17.
Exp Parasitol ; 248: 108500, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893971

RESUMO

The introduction of artemisinin combination therapies (ACTs) against malaria infections opened up a window of possibilities to combat malaria in pregnancy. However, the usefulness of ACTs in all stages of pregnancy must be critically assessed. This study was designed to evaluate dihydroartemisinin-piperaquine (DHAP) as a suitable alternative to sulphadoxine-pyrimethamine (SP) in the treatment of malaria during third-trimester pregnancy in mice. Experimental animals were inoculated with a parasitic dose of 1x106Plasmodium berghei (ANKA strain) infected erythrocytes and randomly allocated into treatment groups. The animals received standard doses of chloroquine alone (CQ)[10 mg/kg], SP [25 mg/kg] and [1.25 mg/kg] and DHAP [4 mg/kg] and [18 mg/kg] combinations. Maternal and pupil survival, litter sizes, pup weight and still-births were recorded, while the effect of the drug combinations on parasite suppression, recrudescence and parasite clearance time were evaluated. The day 4 chemo-suppression of parasitemia by DHAP in infected animals was comparable to SP, and CQ treatment (P > 0.05). The mean recrudescence time was significantly delayed (P = 0.031) in the DHAP treatment group compared to the CQ treatment group, while, there was no recrudescence in animals treated with SP. The birth rate in the SP group was significantly higher than in the DHAP group (P < 0.05). There was 100% maternal and pup survival in both combination treatments comparable with the uninfected gravid controls. The overall parasitological activity of SP against Plasmodium berghei in late-stage pregnancy appeared better than DHAP. In addition, SP treatment resulted in better birth outcomes assessed compared to DHAP treatment.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Feminino , Camundongos , Gravidez , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Quimioterapia Combinada , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium berghei , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico
18.
Environ Sci Pollut Res Int ; 30(8): 21104-21114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264459

RESUMO

Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Plásticos/química , Microplásticos/toxicidade , Peixe-Zebra , Ácidos Ftálicos/química , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
19.
Front Bioeng Biotechnol ; 10: 960320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091430

RESUMO

This study aims to identify the roles of exo-ß-glucan (EPS-BG) and endo-ß-glucan (ENS-BG) extracted from Ganoderma lucidum (GL) in inhibiting the alpha-glucosidase enzyme, a target mechanism for postprandial hyperglycaemia regulation. Upscale production of GL was carried out using a 10 L bioreactor. The zebrafish embryo toxicity test (ZFET) was carried out based on OECD guidelines. The hatching rate, survival rate, heart rate, morphological malformation, and teratogenic defects were observed and determined every 24 h from 0-120 h of post-exposure (hpe). For diabetes induction, adult zebrafish (3-4 months of age) were overfed and induced with three doses of 350 mg/kg streptozotocin (STZ) by intraperitoneal injection (IP) on three different days (days 1, 3, and 5). The oral sucrose tolerance test (OSTT) and anti-diabetic activity of EPS-BG and ENS-BG were evaluated (day 7) using the developed model (n = 15). This study showed that EPS is the most potent compound with the highest inhibitory effect toward the alpha-glucosidase enzyme with an IC50 value of 0.1575 mg/ml compared to ENS extracts (IC50 = 0.3479 mg/ml). Both EPS-BG and ENS-BG demonstrated a strong inhibition of alpha-glucosidase activity similar to the clinically approved alpha-glucosidase inhibitor, acarbose (IC50 = 0.8107 mg/ml). ENS-BG is non-toxic toward zebrafish embryos with LC50 of 0.92 mg/ml and showed no significant changes in ZE hatching and normal heart rate as compared to untreated embryos (161 beats/min). Teratogenic effects of ENS-BG (<1.0 mg/ml) on zebrafish embryonic development were not observed. The DM model of zebrafish was acquired after the third dose of STZ with a fasting BGL of 8.98 ± 0.28 mmol/L compared to the normal healthy group (4.23 ± 0.62 mmol/L). The BGL of DM zebrafish after 30 min treated with EPS-BG and ENS-BG showed a significant reduction (p < 0.0001). Both EPS-BG and ENS-BG significantly reduced DM zebrafish's peak blood glucose and the area under the curve (AUC) in OSTT. Hence, EPS-BG and ENS-BG extracted from GL showed promising inhibition of the alpha-glucosidase enzyme and are considered non-toxic in ZE. Moreover, EPS-BG and ENS-BG reduced blood glucose levels and inhibited hyperglycemia in DM zebrafish.

20.
Biometals ; 35(4): 795-812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35715709

RESUMO

Spodoptera litura, one of the polyphagous pests, causes huge economical lose and use of chemical pesticide causes impact to the environmental. The present study deals with the use of cell- free supernatant of bacteria Xenorhabdus nematophila NP-1 strain for synthesizing silver nanoparticles and analyzing its larvicidal ability against Spodoptera litura. Color change from yellow to dark brown specifies the synthesis of AgNPs. UV-Vis spec indicates the presences of AgNPs at 440 nm λmax and functional groups; alcohols, carboxylic acids, aromatics, alkylhalides, ethers and phenols were confirmed by FTIR. SEM revealed the synthesized AgNPs is in spherical shape, EDaX confirms the elemental composition and the crystalline nature were observed using XRD. GC-MS analysis showed presence of Benzencepropanoic acid, 1, 3, 5 Trichloropent-2-ene, 1,1-Dichloro-2,3- dicmethycycloprone and 1,2-benzenedicarboxylic acid bioactive compounds some of which may be responsible for insecticidal and antibacterial activity. The antibacterial activity against S. aureus, B. subtilis and K. pneumoniae showed maximum zone of inhibition at 100 µL/mL. Larvicidal activity of S. litura shows highest mortality at 48 h. In potted plant experiment, AgNPs treated plants showed less damage, with less leaf consumption by S. litura larvae. Further, the synthesis of AgNPs were targeted to zebrafish embryos (non- target organism) and it didn't exhibit any toxic effect even at higher concentration. Our experiment concludes that, AgNPs synthesized using NP-1 strain has highest antimicrobial and insecticidal activity, which can be used in biomedical and biopesticides.


Assuntos
Inseticidas , Nanopartículas Metálicas , Xenorhabdus , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Larva , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Spodoptera , Staphylococcus aureus , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...