Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Environ Monit Assess ; 196(9): 813, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145782

RESUMO

The presence of microplastics in freshwater systems can have harmful effects on the food chain. Zooplankton, especially suspension and filter feeders, can ingest microplastics, which can cause adverse effects and transfer them to higher trophic levels. Here, we analyze the presence, abundance, and distribution of microplastics in surface water, zooplankton, and fish in two tropical lakes in central Mexico. We collected water samples in triplicate at three sites in each lake and 120 fish of the genus Chirostoma. From each water sample, 300 rotifers and 150 microcrustaceans were randomly isolated and processed independently. Of the particles found in the water, zooplankton, and fish from both lakes, the fragments were the predominant ones. The total abundance of microplastics in the water column of both lakes varied between 1.2 and 17.0 items L-1. In zooplankton, fragments were found predominantly with up to 0.1 items ind-1, while in fish, up to 4.5 items ind-1 was recorded. Our results confirm the presence of microplastics in different compartments of the food webs of freshwater bodies, water column, zooplankton, and fish. Further work is required on the possible effects of these stressors at the different trophic levels.


Assuntos
Monitoramento Ambiental , Peixes , Lagos , Microplásticos , Poluentes Químicos da Água , Zooplâncton , Animais , Lagos/química , México , Poluentes Químicos da Água/análise , Microplásticos/análise , Cadeia Alimentar
2.
Heliyon ; 10(15): e35286, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166086

RESUMO

Wastewater from portable toilets (WWPT) is characterized by a high content of organic matter and a variety of chemical compounds that retain bad odors, especially phenols, a type of pollutant that is difficult to degrade by conventional treatments; in addition, it is persistent, toxic, and accumulates in the aquatic environment. Although different successful experiences with the use of Photo-Fenton are reported in the scientific domain, its application in WWPT is scarce and warrants study due to the wide use of portable toilets. The objective of this study was to evaluate the Photo-Fenton oxidation process in the removal of organic matter expressed as COD in a WWPT, as well as the reduction of phenols and BOD5. The experimental runs were carried out in a 0.50 L batch reactor to evaluate the effect of the factors (H2O2: 0.019, 25.56, 40.67, 87.24, 148.91, 174.45 g L-1 and pH: 2.80, 3.00, 3.27, 4.40, 5.53, 6.00 UNT) on COD removal and sludge production. It was found that the optimum operating conditions of pH 4.72 and H2O2 dosage of 174.45 g L-1 reduced the concentration of phenols by 97.83 % and 95.49 % of COD. In addition, 98.01 % of BOD5 was reduced, resulting in a biodegradability ratio (BOD5/COD) of 0.23 compared to the untreated wastewater of 0.53. From a cost perspective, the use of Photo-Fenton to treat wastewater under these conditions would be US$ 1.15 per liter.

3.
Environ Sci Pollut Res Int ; 31(35): 48674-48686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037629

RESUMO

Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, Co = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, Co = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R2 > 0.4 and X2 < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose-Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R2 = 0.993, X2 = 0.0032 (pilot-scale) and R2 = 0.986, X2 = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed.


Assuntos
Celulose , Ciprofloxacina , Aprendizado de Máquina , Redes Neurais de Computação , Ciprofloxacina/química , Adsorção , Celulose/química , Saccharum/química , Poluentes Químicos da Água
4.
Heliyon ; 10(12): e32894, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994084

RESUMO

This study investigated the novel application of Fe-TiO2-allophane catalysts with 6.0 % w/w of iron oxide and two TiO2 proportions (10 % and 30 % w/w) for degrading atrazine (ATZ) using the heterogeneous dual-effect (HDE) process under sunlight. Comparative analyses with Fe-allophane and TiO2-allophane catalysts were conducted in both photocatalysis (PC) and HDE processes. FTIR spectra reveal the unique hydrous feldspathoids structure of allophane, showing evidence of new bond formation between Si-O groups of allophane clays and iron hydroxyl species, as well as Si-O-Ti bonds that intensified with higher TiO2 content. The catalysts exhibited an anatase structure. In Fe-TiO2-allophane catalysts, iron oxide was incorporated through the substitution of Ti4+ by Fe3+ in the anatase crystal lattice and precipitation on the surface of allophane clays, forming small iron oxide particles. Allophane clays reduced the agglomeration and particle size of TiO2, resulting in an enhanced specific surface area and pore volume for all catalysts. Iron oxide incorporation decreased the band gap, broadening the photoresponse to visible light. In the PC process, TiO2-allophane achieves 90 % ATZ degradation, attributed to radical species from the UV component of sunlight. In the HDE process, Fe-TiO2-allophane catalysts exhibit synergistic effects, particularly with 30 % w/w TiO2, achieving 100 % ATZ degradation and 85 % COD removal, with shorter reaction time as TiO2 percentage increased. The HDE process was performed under less acidic conditions, achieving complete ATZ degradation after 6 h without iron leaching. Consequently, Fe-TiO2-allophane catalysts are proposed as a promising alternative for degrading emerging pollutants under environmentally friendly conditions.

5.
Daru ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987508

RESUMO

BACKGROUND: Several countries' most incorrectly discarded medicines are acetaminophen (ACM), metamizole (MTZ), and nimesulide (NMS). These xenobiotics easily reach the aquatic environment; such contamination is very important for the health of humans and other species, yet little explored. OBJECTIVES: To evaluate the cocktail effect of ACM, MTZ, and NMS during zebrafish's initial development. METHODS: Zebrafish embryos 6-8 h post-fertilization (hpf) were exposed to different concentrations of ACM, MTZ, and NMS, separately, to obtain the 50% lethal concentrations (LC50). Next, the embryos were exposed to distinct concentrations of the cocktail (LC50/2, LC50/5, LC50/10, and LC50/20) in a semi-static system. Samples were analyzed 0, 24, 48, and 96 h after exposure, and the drugs' concentrations in E3 medium were assessed by high-performance liquid chromatography. For embryotoxicity evaluation, the mortality, hatching, and heart rates; total length; and pericardial and yolk sac areas were determined. In addition, body malformations, edemas, presence of pigmentation, and histopathological assessments were also recorded. RESULTS: The LC50 values obtained for MTZ, ACM, and NMS were 4.69 mgmL-1, 799.98 µgmL-1, and 0.92 µgmL-1, respectively. No difference was observed between the drugs' nominal and observed concentrations at each time point. The cocktail significantly induced mortality and decreased hatching in the LC50/10, LC50/5, and LC50/2 groups. Additionally, body malformations, pigmentation loss, and yolk sac and pericardial edemas were observed in the cocktail groups. The cocktail groups' larvae had decreased total length and slower heart rates compared to the controls (p < 0.05). The histopathological assessment showed that yolk sac edema promoted severe histological changes in the esophageal-intestine junction and intestine in larvae treated with cocktails. Moreover, PAS-positive structures decreased in the esophageal-intestine junction, intestine, and liver in larvae exposed to pharmaceutical cocktails. CONCLUSION: This study's findings suggest the cocktail of ACM, MTZ, and NMS may be hazardous to aquatic organisms in case of environmental contamination.

6.
J Toxicol Environ Health A ; 87(17): 687-700, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836411

RESUMO

The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.


Assuntos
Benzofenonas , Embrião não Mamífero , Protetores Solares , Titânio , Poluentes Químicos da Água , Peixe-Zebra , Animais , Titânio/toxicidade , Titânio/química , Benzofenonas/toxicidade , Protetores Solares/toxicidade , Protetores Solares/química , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Ecotoxicologia , Larva/efeitos dos fármacos
7.
Mikrochim Acta ; 191(7): 374, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847878

RESUMO

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Assuntos
Captopril , Limite de Detecção , Nanopartículas , Águas Residuárias , Captopril/urina , Captopril/análise , Captopril/química , Águas Residuárias/análise , Nanopartículas/química , Polímeros Molecularmente Impressos/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina , Dióxido de Silício/química , Impressão Molecular , Humanos
8.
Environ Res ; 258: 119424, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879109

RESUMO

Birds are good bioindicators of disturbance in the environment. They are present in different habitats and trophic levels. In addition, rapid urbanization has led birds to use cities as shelter and for seeking food resources. Sewage treatment plants (STPs) are suitable locations for free-living birds within cities. However, few studies address the impacts of emerging pollutants from sewage treatment plants on wild birds. In this sense, the aim of this study was to analyze the genotoxic, mutagenic, and immunological impacts from metal and pollutant exposure on free-living birds collected at a STP. For comparison, birds were collected in a preserved environment, the Silvania National Forest (FLONA). To achieve this, we used non-destructive biomarkers sensitive to environmental changes. Birds were collected in both environments using mist nets. After collection, birds were weighed, measured, species-identified, and released. Blood was collected for comet assay, micronucleus test, and leukocyte profile, while feathers were collected for metal concentration analysis. Water physicochemical parameters were measured at both sites, and water samples were collected for metal analysis. Our results demonstrated that birds collected at the STP exhibit a higher frequency of genotoxic damage and erythrocyte abnormalities, and increased immune response compared to FLONA birds. Traces of potentially toxic metals, such as Hg and As, were found in the birds feathers from both environments, raising concerns about metal contamination in both environments. Trophic guilds appear to respond similarly to exposure. The parameters and metals found in the water reflect environmental characteristics and may be influencing pollutant availability. Finally, despite the advancement of our findings, studies linking these damages to detrimental effects on behavior and reproduction are encouraged.


Assuntos
Biomarcadores , Aves , Urbanização , Animais , Biomarcadores/sangue , Monitoramento Ambiental/métodos , Testes para Micronúcleos , Ensaio Cometa , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos , Brasil , Metais/análise , Metais/toxicidade , Dano ao DNA , Plumas/química , Ecotoxicologia
9.
Sci Total Environ ; 944: 173918, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866151

RESUMO

Per- and polyfluoroalkyl substances (PFAS), often referred to as "forever chemicals", are a class of man-made, extremely stable chemicals, which are widely used in industrial and commercial applications. Exposure to some PFAS is now known to be detrimental to human health. By virtue of PFAS long residence times, they are widely detected in the environment, including remote locations such as the Arctics, where the origin of the PFAS is poorly understood. It has been suggested that PFAS may be transported through contaminated waters, leading to accumulation in coastal areas, where they can be aerosolised via sea spray, thereby extending their geographical distribution far beyond their original source regions. The aim of this work is to investigate, for the first time, whether "forever chemicals" could be transported to areas considered to be pristine, far from coastal sites. This study was performed at the Amazonian Tall Tower Observatory (ATTO), a unique remote site situated in the middle of the Amazon rainforest, where a restricted PFAS, perfluorooctanoic acid (PFOA), was observed with concentrations reaching up to 2 pg/m3. A clear trend of increasing concentration with sampling height was observed and air masses from the south over Manaus had the highest concentrations. Atmospheric lifetime estimations, removal mechanisms supported by measurements at two heights (320 and 42 m above the rainforest), and concentration spikes indicated a long-range transport of PFOA to pristine Amazon rainforest. Potential sources, including industrial activities in urban areas, were explored, and historical fire management practices considered. This research presents the first measurements of PFAS in the atmosphere of Amazon rainforest. Remarkably, even in this remote natural environment, appreciable levels of PFAS can be detected. This study provides valuable insights into the long-range transport of the anthropogenic "forever chemical" into a remote natural ecosystem and should raise awareness of potential environmental implications.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Fluorocarbonos , Poluentes Atmosféricos/análise , Fluorocarbonos/análise , Atmosfera/química , Brasil , Caprilatos/análise , Floresta Úmida
10.
Rev. Fac. Med. UNAM ; 67(3): 8-21, may.-jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569542

RESUMO

Resumen El plástico se ha vuelto muy popular en los últimos años gracias a su durabilidad y propiedades. A pesar de sus múltiples ventajas, la humanidad ha desarrollado cierta dependencia hacia este material, lo que ha propiciado un incremento en su uso y, a su vez, en la generación de desechos ante el escaso hábito de reúso. Uno de los polímeros plásticos más usados es el poliestireno (PS), ya que este se usa en una amplia gama de aplicaciones gracias a su bajo costo y fácil producción. Sin embargo, pasado el tiempo de vida útil de este plástico, es considerado como desecho. El PS al estar expuesto a condiciones atmosféricas como la radiación UV, se fragmenta dando como resultado la creación de microplásticos (MP), mismos que son pequeñas partículas que no sobrepasan los 5 mm, lo que representa una amenaza al medio ambiente pues, al degradarse, las propiedades decaen, se genera un cambio dimensional y, además, pueden ser fácilmente transportadas no solo al medio ambiente, sino también a los organismos. Este artículo de revisión se enfoca en evidenciar las principales rutas que siguen los MP al interaccionar con los seres humanos y los efectos potenciales de los PS-MP en el citoesqueleto, así como en resaltar la necesidad de más estudios al respecto.


Abstract Plastic has become very popular in recent years due to its durability and properties. Despite its many advantages, humanity has developed a certain dependence on this material, which represents an increase in its use and in turn, in waste. One of the most widely used plastic polymers is the polystyrene (PS), as is used in a wide range of applications due to its low cost and easy production, although after the useful life of the plastic, it is considered as waste. When plastic is exposure to atmospheric conditions such as UV radiation, it degrades and fragments giving rise to microplastics (MPs), which are defined as small particles that do not exceed 5 mm, representing a threat to the environment because when they degrade the properties decay, a dimensional change is generated and they can also be easily transported not only to the environment but also to organisms. This review article focuses on highlighting the main pathways that MPs follow when interacting with humans and the potential effects of PS-MPs on the cytoskeleton, as well as highlighting the need for more studies in this regard.

11.
Toxics ; 12(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787099

RESUMO

The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.

12.
Environ Toxicol Chem ; 43(6): 1274-1284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558040

RESUMO

Tourism is one of the most important activities for the economy of Nor Patagonia Argentina. In Bariloche City, located on the shores of Lake Nahuel Huapi, both the permanent and the temporary populations have increased significantly in recent decades, and this has not necessarily been accompanied by an improvement in sewage networks. Emerging micropollutants such as pharmaceutical compounds reach aquatic systems directly, in the absence of a domestic sewage network, or through effluents from wastewater treatment plants (WWTP), which do not efficiently remove these substances and represent a major threat to the environment. Therefore, the objective of our study was to monitor the presence of pharmaceutical compounds discharged both through wastewater effluents and diffusely from housing developments into Lake Nahuel Huapi. The results obtained demonstrate the presence of pharmaceuticals in Lake Nahuel Huapi with concentrations ranging from not detectable (ND) to 110.6 ng L-1 (caffeine). The highest pharmaceutical concentration recorded in WWTP influent corresponded to caffeine (41728 ng L-1), and the lowest concentration was paracetamol (18.8 ng L-1). The removal efficiency of pharmaceuticals in the WWTP was calculated, and ranged from 0% for carbamazepine to 66% for ciprofloxacin. This antibiotic showed the lowest % of attenuation (73%) in Lake Nahuel Huapi. These results on the occurrence of a wide variety of pharmaceuticals are the first generated in Patagonia, representing a regional baseline for this type of micropollutant and valuable information for the subsequent design of removal strategies for emerging pharmaceutical pollutants in surface water. Environ Toxicol Chem 2024;43:1274-1284. © 2024 SETAC.


Assuntos
Monitoramento Ambiental , Lagos , Poluentes Químicos da Água , Argentina , Poluentes Químicos da Água/análise , Lagos/química , Preparações Farmacêuticas/análise , Águas Residuárias/química
13.
Environ Res ; 252(Pt 4): 118951, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688417

RESUMO

Pharmaceuticals and Personal Care Compounds (PPCPs) are contaminants present in wastewater and in the receiving surface waters, which have no regulations and can bring on environmental risks. In this study, we evaluated the presence of six PPCPs in the Oro River Sub-basin (Colombia) and the environmental risk associated with them. We have verified that the monitored rivers show the presence of Ibuprofen, Cephalexin and Carbamazepine; the first ones (Ibuprofen and cephalexin) were those that presented higher concentrations since they are widely prescribed in Colombia. Pharmaceutical compound concentrations in the rivers downstream of the wastewater treatment plants from Floridablanca were higher than in other monitoring sites being a significant point source of contamination. This wastewater treatment plant receives hospital discharges from the city, including internationally recognized clinics accepting patients from different parts of the country. The environmental risk assessment showed that ibuprofen and Cephalexin have a higher impact on aquatic organisms.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Rios/química , Medição de Risco , Colômbia , Preparações Farmacêuticas/análise , Ibuprofeno/análise , Ibuprofeno/toxicidade
14.
Braz J Microbiol ; 55(2): 1507-1519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468117

RESUMO

Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.


Assuntos
Bacillus pumilus , Biodegradação Ambiental , Água do Mar , Dodecilsulfato de Sódio , Staphylococcus saprophyticus , Dodecilsulfato de Sódio/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/isolamento & purificação , Bacillus pumilus/classificação , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/isolamento & purificação , Staphylococcus saprophyticus/metabolismo , Staphylococcus saprophyticus/classificação , Água do Mar/microbiologia , Tensoativos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo , Águas Residuárias/microbiologia
15.
Food Chem Toxicol ; 184: 114350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097007

RESUMO

Melanoma is a type of skin cancer considered aggressive due to its high metastatic ability and rapid progression to other tissues and organs. BDE-209 (2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether) is an additive used as a flame retardant and classified as a persistent organic pollutant that has a high bioaccumulation capacity due to its lipophilic nature. This substance has already been detected in rivers, air, soil, plants and even in different human biological samples, such as plasma, umbilical cord blood and breast milk, revealing a great concern to human populations. Thus, in the current study we investigated whether prior exposure of murine melanoma B16-F1 cells to BDE-209 modulates in vivo progression and malignancy of melanoma. B16-F1 cells were cultured and exposed in vitro to BDE-209 (0.01, 0.1 e 1 nM) for 15 days and then inoculated, via caudal vein, in C57BL/6 mice for experimental metastasis analysis after 20 days. Inoculation of BDE-209-exposed cells resulted in 82% increase of metastasis colonized area in the lungs of mice, downregulation of tumor suppressors genes, such as Timp3 and Reck, decrease of lipid peroxidation and increase of systemic and local inflammatory response. These findings are related to melanoma progression. Additionally, the histopathological analysis revealed greater number of focal points of metastases in the lungs and invasiveness of metastases to the mice brain (89%). The results showed that exposure to BDE-209 may alter the phenotype of B16-F1 cells, worsening their metastatic profile. Current data showed that BDE-209 may interfere with the prognosis of melanoma by modulating cells with less invasiveness capacity to a more aggressive profile.


Assuntos
Melanoma Experimental , Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Animais , Camundongos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Éteres Difenil Halogenados , Melanoma Experimental/patologia
16.
Gels ; 9(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998999

RESUMO

This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 µm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir's model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L-1, 86 ± 6 mg L-1, and 127 ± 4 mg L-1, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.

17.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999321

RESUMO

In this research work, the photocatalytic capacity shown by the nanoparticles of the CaTiO3 system was evaluated to degrade two pollutants of emerging concern, namely methyl orange (MO)-considered an organic contaminating substance of the textile industry that is non-biodegradable when dissolved in water-and levofloxacin (LVF), an antibiotic widely used in the treatment of infectious diseases that is released mostly to the environment in its original chemical form. The synthesis process used to obtain these powders was the polymeric precursor method (Pechini), at a temperature of 700 °C for 6 h. The characterization of the obtained oxide nanoparticles of interest revealed the presence of a majority perovskite-type phase with an orthorhombic Pbnm structure and a minority rutile-type TiO2 phase, with a P42/mnm structure and a primary particle size <100nm. The adsorption-desorption isotherms of the synthesized solids had H3-type hysteresis loops, characteristic of mesoporous solids, with a BET surface area of 10.01m2/g. The Raman and FTIR spectroscopy results made it possible to identify the characteristic vibrations of the synthesized system and the characteristic deformations of the perovskite structure, reiterating the results obtained from the XRD analysis. Furthermore, a bandgap energy of ~3.4eV and characteristic emissions in the violet (437 nm/2.8 eV) and orange (611 nm/2.03 eV) were determined for excitation lengths of 250 nm and 325 nm, respectively, showing that these systems have a strong emission in the visible light region and allowing their use in photocatalytic activity to be potentialized. The powders obtained were studied for their photocatalytic capacity to degrade methyl orange (MO) and levofloxacin (LVF), dissolved in water. To quantify the coloring concentration, UV-visible spectroscopy was used considering the variation in the intensity of the characteristic of the greatest absorption, which correlated with the change in the concentration of the contaminant in the solution. The results showed that after irradiation with ultraviolet light, the degradation of the contaminants MO and LVF was 79.4% and 98.1% with concentrations of 5 g/L and 10 g/L, respectively.

18.
Environ Sci Pollut Res Int ; 30(56): 118536-118544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917255

RESUMO

Ketorolac, a highly persistent NSAID of environmental concern, was significantly removed from water (80% removal) through photoelectrocatalysis where titanium dioxide nanotubes prepared by Ti foil electrochemical anodization at 30 V were used as photoanodes. Fifteen milligrams per liter of ketorolac solutions in a 0.05 M Na2SO4 aqueous medium was subjected to irradiation from a 365-nm light with an intensity of 1 mWcm-2 and under an applied potential of 1.3 V (vs. Hg/Hg2SO4/sat.K2SO4) at pH 6.0. When each process (photo and electrocatalysis) was carried out separately, less than 20% drug removal was achieved as monitored through UV-vis spectrophotometry. Through scavenging experiments, direct oxidation on the photogenerated holes and oxidation by hydroxyl radical formation were found to play a key role on ketorolac's degradation. Chemical oxygen demand (COD) analyses also showed a significant COD decreased (68%) since the initial COD value was 31.3 mg O2/L and the final COD value was 10.1 mg O2/L. A 48% mineralization was also achieved, as shown by total organic carbon (TOC) analyses. These results showed that electrodes based on titania nanotubes are a promising alternative material for simultaneous photocatalytic and electrocatalytic processes in water remediation.


Assuntos
Mercúrio , Nanotubos , Poluentes Químicos da Água , Água , Cetorolaco , Titânio , Oxirredução , Eletrodos , Catálise
19.
Artigo em Inglês | MEDLINE | ID: mdl-37888940

RESUMO

The present study proposes the monitoring of compounds of drugs of abuse through the use of passive samplers in water systems. Initially, four positive ion compounds of interest were determined according to national surveys, and then composite sampling and passive sampling were implemented using continuous-flow passive samplers containing two types of sorbents, the Empore disk and Gerstel Twister. Two study sites were established at the beginning and at the end of the middle Bogotá River basin. After 4 days, the sorbents were removed so that they could be desorbed and analyzed using UHPLC-MS in the laboratory. For the composite samples, the results were below the first calibration curve point (FCCP) of the chromatographic method, and for passive sampling, peaks of benzoylecgonine (BE) (21427.3 pg mL-1), methamphetamine (MET) (67101.5 pg mL-1), MDMA (ecstasy) (225844.8 pg mL-1) and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (15908.4 pg mL-1) were found. Therefore, passive sampling could be suggested as an alternative to composite sampling for the monitoring of compounds.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Rios/química
20.
Environ Sci Pollut Res Int ; 30(54): 116078-116090, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37906333

RESUMO

Carbamazepine is a widely used antiepileptic drug to control and treat a variety of disorders that is frequently detected in surface water, and in municipal and urban wastewater. This recalcitrant pollutant could be removed by alternative advanced oxidation technology such as heterogeneous photocatalysis. Ce-modified ZnO and Pd-modified TiO2 were synthesized by a microwave-assisted sol-gel method. According to the characterizations (Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy), a mixture of oxides was determined in both materials: CeO2/ZnO and PdO/TiO2. Photocatalytic degradation of carbamazepine in pure water under visible light (3 h) was assayed. The degradation percentage obtained with each catalyst was 80%, 53%, 20%, and 9% for ZnO, Ce-modified ZnO, TiO2, and Pd-modified TiO2, respectively. The leaching of Zn as a possible source of water contamination was tested, finding the lowest value for Ce-modified ZnO by adjusting the initial pH up to neutrality. Later, an environmentally relevant concentration of carbamazepine (228 µg L-1) was assayed, using local surface water (pH = 8.3). Despite the presence of other compounds in the real water matrix, after 5 h of photocatalysis, a 56% of degradation of the pharmaceutical and low leaching of Zn were achieved. The use of Ce-modified ZnO activated by visible light is a promising strategy for the abatement of pharmaceutical active compounds.


Assuntos
Água , Óxido de Zinco , Óxido de Zinco/química , Luz , Titânio/química , Carbamazepina/química , Preparações Farmacêuticas , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA