Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1406951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040443

RESUMO

Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and endocrine resistance. This review explores the structure, signaling pathways, and implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+ breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-like tumors, and its amplification is associated with poor prognosis and treatment resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification, though less common, is critical in hormone receptor regulation, driving proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to endocrine resistance through various mechanisms, including the activation of alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Endocrine resistance remains a major clinical challenge, with around 70% of breast cancers initially hormone receptor positive. Despite the success of CDK 4/6 inhibitors in combination with endocrine therapy (ET), resistance often develops, necessitating new treatment strategies. FGFR inhibitors have shown potential in preclinical studies, but clinical trials have yielded limited success due to off-target toxicities and lack of predictive biomarkers. Current clinical trials, including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib, have demonstrated mixed outcomes, underscoring the complexity of FGFR signaling in breast cancer. The interplay between FGFR and other signaling pathways highlights the need for comprehensive molecular profiling and personalized treatment approaches. Future research should focus on identifying robust biomarkers and developing combination therapies to enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting FGFR signaling in ER+ breast cancer presents both challenges and opportunities. A deeper understanding of the molecular mechanisms and resistance pathways is crucial for the successful integration of FGFR inhibitors into clinical practice, aiming to improve outcomes for patients with endocrine-resistant breast cancer.

2.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853915

RESUMO

Purpose: This study aimed to determine the prevalence of endocrine resistance in a cohort of Hispanic Mexican breast cancer (BC) patients receiving care at Instituto Nacional de Cancerología (INCan). Additionally, the clinical-pathological factors associated with endocrine resistance were identified, and their impact on patient survival was explored. Methods: A retrospective analysis of 200 BC patients who attended INCan between 2012 and 2016 with estrogen receptor (ER) and progesterone receptor (PR) positive tumors was made. Endocrine resistance was defined according to the International Consensus Guidelines for Advance Breast Cancer 2 definition. Their clinicopathological characteristics were analyzed to determine the association with endocrine resistance presence. We used sensitivity analyses and multivariate-adjusted logistic regressions, Kaplan-Meier curves, and multivariate-adjusted Cox regressions. P-value < 0.05 was considered as statistically significant. Results: Endocrine resistance was observed in 32.5% of patients included in this study. The distinction between hormone resistance and sensitivity was influenced by tumor size and node status. It had a mean diameter of 7.15 cm in endocrine resistance cases compared to 5.71 cm in non-endocrine, with N3 status present in 20% of endocrine resistance cases versus only 2.2% in non-endocrine (p-value < 0.001). The clinical stage exhibited a strong association with endocrine resistance (Risk Ratio [RR] 4.39, 95% confidence interval [95%CI] 1.50, 11.43). Furthermore, endocrine resistance significantly impacted mortality during the follow-up, with a Hazard Ratio [HR] of 23.7 (95%CI 5.20, 108.42) in multivariable-adjusted models. However, a complete pathological response reduced the endocrine resistance risk, as demonstrated by a Risk Ratio (RR) of 0.15 (95% CI 0.03, 0.75). Conclusions: Advanced clinical stage at diagnosis predicted endocrine resistance in Hispanic Mexican BC patients. Complete pathologic response in locally advanced disease patients was also a key predictor of endocrine resistance. These results indicated that endocrine resistance was a critical factor in BC during follow-up.

4.
Front Endocrinol (Lausanne) ; 13: 867448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498431

RESUMO

Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.


Assuntos
Receptor alfa de Estrogênio , Neoplasias , Estrogênios , Fatores de Transcrição
5.
Breast Cancer Res Treat ; 192(1): 43-52, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031902

RESUMO

PURPOSE: Breast cancer (BC) is considered a heterogeneous disease composed of distinct subtypes with diverse clinical outcomes. Luminal subtype tumors have the best prognosis, and patients benefit from endocrine therapy. However, resistance to endocrine therapies in BC is an obstacle to successful treatment, and novel biomarkers are needed to understand and overcome this mechanism. The RET, BCAR1, and BCAR3 genes may be associated with BC progression and endocrine resistance. METHODS: Aiming to evaluate the expression profile and prognostic value of RET, BCAR1, and BCAR3, we performed immunohistochemistry on tissue microarrays (TMAs) containing a cohort of 361 Luminal subtype BC. RESULTS: Low expression levels of these three proteins were predominantly observed. BCAR1 expression was correlated with nuclear grade (p = 0.057), and BCAR3 expression was correlated with lymph node status (p = 0.011) and response to hormonal therapy (p = 0.021). Further, low expression of either BCAR1 or BCAR3 was significantly associated with poor prognosis (p = 0.005; p = 0.042). Pairwise analysis showed that patients with tumors with low BCAR1/low BCAR3 expression had a poorer overall survival (p = 0.013), and the low BCAR3 expression had the worst prognosis with RET high expression stratifying these patients into two different groups. Regarding the response to hormonal therapy, non-responder patients presented lower expression of RET in comparison to the responder group (p = 0.035). Additionally, the low BCAR1 expression patients had poorer outcomes than BCAR1 high (p = 0.015). CONCLUSION: Our findings suggest RET, BCAR1, and BCAR3 as potential candidate markers for endocrine therapy resistance in Luminal BC.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína Substrato Associada a Crk , Feminino , Fatores de Troca do Nucleotídeo Guanina , Humanos , Imuno-Histoquímica , Prognóstico , Proteínas Proto-Oncogênicas c-ret
6.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34977930

RESUMO

Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Esteroides/fisiologia , Transdução de Sinais/fisiologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Receptor alfa de Estrogênio/análise , Feminino , Fatores de Crescimento de Fibroblastos/genética , Amplificação de Genes , Humanos , Camundongos , Mutação , Receptor Cross-Talk/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética
7.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359587

RESUMO

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.

8.
J Mammary Gland Biol Neoplasia ; 25(1): 13-26, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080788

RESUMO

Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética
9.
Clin Transl Oncol ; 22(4): 576-584, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31209793

RESUMO

PURPOSE: Breast cancer with positive hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) is a special subgroup with different clinical features and survival, especially the endocrine therapy resistance. The main purpose of the study is to find the potential markers to predict the survival and endocrine therapy resistance of patients with HR+ /HER2+ breast cancer. METHODS: Surveillance, Epidemiology, and End Results (SEER) database was used to collect patients' clinical information and tumor features including age, tumor size, grade, stage and long-term survival; the BioPortal for Cancer Genomics (https://cbioportal.org) was used to download the gene data for specific patient group; cluster analyses of gene expression were conducted through the DAVID Bioinformatics Resources 6.8 software. RESULTS: All of the included patients were diagnosed as HR positive breast cancer, but the PR positive rates were more common in HER2- group and also the ER+ /PR+ disease. Patients in HR+ /HER2+ group were more likely to present as stage III-IV and grade III disease. Among HR+ /HER2+ patients, 68.6% received chemotherapy, while only 28.9% in HR+ /HER2- group received chemotherapy (P < 0.0001). The survival of HR+ /HER2+ group was poorer. From TCGA database, series genes which were differed between HR+ /HER2+ and HR+ /HER2- were screened out that related to ERBB2 closely: IKZF3, LASP1, CDK12, MLLT6, and RARA. The first three candidate genes were associated with patients' survival, especially in patients who received hormone therapies. CONCLUSION: This study analyzed the clinical characteristics and survival of patients with HR+/HER2+ breast cancer as a special subgroup. ERBB2, IKZF3, LASP1, and CDK12 were the potential markers of the resistance of endocrine therapy, and they will provide new strategies for clinicians.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Pessoa de Meia-Idade
10.
J Nanobiotechnology ; 17(1): 120, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31812165

RESUMO

BACKGROUND: Tamoxifen (Tam) is the most frequent treatment for estrogen receptor (ER) positive breast cancer. We recently showed that fibronectin (FN) leads to Tam resistance and selection of breast cancer stem cells. With the aim of developing a nanoformulation that would simultaneously tackle ER and FN/ß1 integrin interactions, we designed polyethylene glycol-polycaprolactone polymersomes polymersomes (PS) that carry Tam and are functionalized with the tumor-penetrating iRGD peptide (iRGD-PS-Tam). RESULTS: Polyethylene glycol-polycaprolactone PS were assembled and loaded with Tam using the hydration film method. The loading of encapsulated Tam, measured by UPLC, was 2.4 ± 0.5 mol Tam/mol polymer. Physicochemical characterization of the PS demonstrated that iRGD functionalization had no effect on morphology, and a minimal effect on the PS size and polydispersity (176 nm and Pdi 0.37 for iRGD-TAM-PS and 171 nm and Pdi 0.36 for TAM-PS). iRGD-PS-Tam were taken up by ER+ breast carcinoma cells in 2D-culture and exhibited increased penetration of 3D-spheroids. Treatment with iRGD-PS-Tam inhibited proliferation and sensitized cells cultured on FN to Tam. Mechanistically, treatment with iRGD-PS-Tam resulted in inhibition ER transcriptional activity as evaluated by a luciferase reporter assay. iRGD-PS-Tam reduced the number of cells with self-renewing capacity, a characteristic of breast cancer stem cells. In vivo, systemic iRGD-PS-Tam showed selective accumulation at the tumor site. CONCLUSIONS: Our study suggests iRGD-guided delivery of PS-Tam as a potential novel therapeutic strategy for the management of breast tumors that express high levels of FN. Future studies in pre-clinical in vivo models are warranted.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Oligopeptídeos/química , Receptores de Estrogênio/metabolismo , Tamoxifeno/administração & dosagem , Animais , Antineoplásicos Hormonais/farmacocinética , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Autorrenovação Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Poliésteres/química , Polietilenoglicóis/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos
11.
Steroids ; 152: 108492, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513818

RESUMO

Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.


Assuntos
Núcleo Celular/metabolismo , Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias/metabolismo , Receptores de Esteroides/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31440208

RESUMO

Estrogen receptor positive breast neoplasias represent over 70% of diagnosed breast cancers. Depending on the stage at which the tumor is detected, HER2 status and genomic risk, endocrine therapy is combined with either radio, chemo and/or targeted therapy. A growing amount of evidence supports the notion that components of the tumor microenvironment play specific roles in response to treatment and that strategies targeting these key interactions with tumor cells could pave the way to a new generation of therapies. In this review, we analyze the evidence suggesting different components of the tumor microenvironment play a role in hormone receptor positive breast cancer progression. In particular we focus on the immune system, carcinoma associated fibroblasts and the extracellular matrix. Further insight into the cross talk between these constituents of the microenvironment and the tumor cells may lead to therapies that eliminate disseminated metastatic cells early on, and thus reduce distant disease relapse which is the leading cause of death for patients who are diagnosed with this illness.

13.
Cancers (Basel) ; 11(2)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736340

RESUMO

Antiestrogenic adjuvant treatments are first-line therapies in patients with breast cancer positive for estrogen receptor (ER+). Improvement of their treatment strategies is needed because most patients eventually acquire endocrine resistance and many others are initially refractory to anti-estrogen treatments. The tumor microenvironment plays essential roles in cancer development and progress; however, the molecular mechanisms underlying such effects remain poorly understood. Breast cancer cell lines co-cultured with TNF-α-conditioned macrophages were used as pro-inflammatory tumor microenvironment models. Proliferation, migration, and colony formation assays were performed to evaluate tamoxifen and ICI 182,780 resistance and confirmed in a mouse-xenograft model. Molecular mechanisms were investigated using cytokine antibody arrays, WB, ELISA, ChIP, siRNA, and qPCR-assays. In our simulated pro-inflammatory tumor microenvironment, tumor-associated macrophages promoted proliferation, migration, invasiveness, and breast tumor growth of ER+ cells, rendering these estrogen-dependent breast cancer cells resistant to estrogen withdrawal and tamoxifen or ICI 182,780 treatment. Crosstalk between breast cancer cells and conditioned macrophages induced sustained release of pro-inflammatory cytokines from both cell types, activation of NF-κB/STAT3/ERK in the cancer cells and hyperphosphorylation of ERα, which resulted constitutively active. Our simulated tumor microenvironment strongly altered endocrine and inflammatory signaling pathways in breast cancer cells, leading to endocrine resistance in these cells.

14.
Horm Cancer ; 9(5): 338-348, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29956066

RESUMO

Endocrine resistance may develop as a consequence of enhanced growth factor signaling. Fibroblast growth factor 2 (FGF2) consists of a low and several high molecular weight forms (HMW-FGF2). We previously demonstrated that antiprogestin-resistant mammary carcinomas display lower levels of progesterone receptor A isoforms (PRA) than B isoforms (PRB). Our aim was to evaluate the role of FGF2 isoforms in breast cancer progression. We evaluated FGF2 expression, cell proliferation, and pathway activation in models with different PRA/PRB ratios. We performed lentiviral infections of different FGF2 isoforms using the human hormone-responsive T47D-YA cells, engineered to only express PRA, and evaluated tumor growth, metastatic dissemination, and endocrine responsiveness. We assessed FGF2 expression and localization in 81 human breast cancer samples. Antiprogestin-resistant experimental mammary carcinomas with low PRA/PRB ratios and T47D-YB cells, which only express PRB, displayed higher levels of HMW-FGF2 than responsive variants. HMW-FGF2 overexpression in T47D-YA cells induced increased tumor growth, lung metastasis, and antiprogestin resistance compared to control tumors. In human breast carcinomas categorized by their PRA/PRB ratio, we found nuclear FGF2 expression in 55.6% of tumor cells. No differences were found between nuclear FGF2 expression and Ki67 proliferation index, tumor stage, or tumor grade. In low-grade tumor samples, moderate to high nuclear FGF2 levels were associated to carcinomas with low PRA/PRB ratio. In conclusion, we show that HMW-FGF2 isoforms are PRB targets which confer endocrine resistance and are localized in the nuclei of breast cancer samples. Hence, targeting intracellular FGF2 may contribute to overcome tumor progression.


Assuntos
Neoplasias da Mama/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Peso Molecular
15.
Curr Cancer Drug Targets ; 18(10): 979-987, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29237381

RESUMO

BACKGROUND: Endocrine resistance and metastatic dissemination comprise major clinical challenges for breast cancer treatment. The fibroblast growth factor receptor family (FGFR) consists of four tyrosine kinase transmembrane receptors, involved in key biological processes. Genomic alterations in FGFR have been identified in advanced breast cancer and thus, FGFR are an attractive therapeutic target. However, the efficacy of FGFR inhibitors on in vivo tumor growth is still controversial. OBJECTIVE: The purpose of this study was to evaluate the role of FGFR in tumor growth and breast cancer progression. METHODS: Cell proliferation was assessed by 3H-thymidine uptake and cell counting in primary cultures of endocrine resistant mammary carcinomas and a human cell line, respectively. Tumor transplants and cell injections were used to determine in vivo growth and spontaneous metastasis. FGFR1-3 and αSMA expression were evaluated on primary tumors by immunohistochemistry. RESULTS: Antiprogestin resistant murine transplants and a human xenograft express high levels of total FGFR1-3. In vitro treatment with the FGFR inhibitor, BGJ398, impaired cell proliferation of resistant variants versus vehicle. In vivo, versus control, BGJ398 treatment decreased one out of four resistant tumors, however all tumors showed a decreased epithelial/stromal ratio. Finally, in a model of hormone resistant mammary cancer that spontaneously metastasizes to the lung, BGJ398 decreased the number of mice with lung metastasis. CONCLUSION: FGFR inhibitors are promising tools that require further investigation to identify sensitive tumors. These studies suggest that targeting FGFR combined with other targeted therapies will be useful to impair breast cancer progression.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Análise de Variância , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Distribuição de Qui-Quadrado , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Metástase Neoplásica , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
16.
Front Oncol ; 7: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28361033

RESUMO

Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress.

17.
World J Clin Oncol ; 6(6): 207-11, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26677432

RESUMO

Breast cancer affects one in eight women around the world. Seventy five percent of these patients have tumors that are estrogen receptor positive and as a consequence receive endocrine therapy. However, about one third eventually develop resistance and cancer reappears. In the last decade our vision of cancer has evolved to consider it more of a tissue-related disease than a cell-centered one. This editorial argues that we are only starting to understand the role the tumor microenvironment plays in therapy resistance in breast cancer. The development of new therapeutic strategies that target the microenvironment will come when we clearly understand this extremely complicated scenario. As such, and as a scientific community, we have extremely challenging work ahead. We share our views regarding these matters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA