Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 43(9): 1456-1474, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37254891

RESUMO

Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Primatas , Neurônios , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/terapia , Isquemia
2.
Neurospine ; 20(1): 164-180, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37016865

RESUMO

After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI.

3.
Biomaterials ; 292: 121919, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455486

RESUMO

Activation of endogenous neurogenesis by bioactive materials enables restoration of sensory/motor function after complete spinal cord injury (SCI) via formation of new relay neural circuits. The underlying wiring logic of newborn neurons in adult central nervous system (CNS) is unknown. Here, we report neurotrophin3-loaded chitosan biomaterial substantially recovered bladder function after SCI. Multiple neuro-circuitry tracing technologies using pseudorabies virus (PRV), rabies virus (RV), and anterograde adeno-associated virus (AAV), demonstrated that newborn neurons were integrated into the micturition neural circuits and reconnected higher brain centers and lower spinal cord centers to control voiding, and participated in the restoration of the lower urinary tract function, even in the absence of long-distance axonal regeneration. Opto- and chemo-genetic studies further supported the notion that the supraspinal control of the lower urinary tract function was partially recovered. Our data demonstrated that regenerated relay neurons could be properly integrated into disrupted long-range neural circuits to restore function of adult CNS.


Assuntos
Herpesvirus Suídeo 1 , Traumatismos da Medula Espinal , Animais , Humanos , Recém-Nascido , Bexiga Urinária , Traumatismos da Medula Espinal/terapia , Neurônios , Medula Espinal
4.
Stem Cells Cloning ; 15: 53-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859889

RESUMO

Traumatic brain injury is the main cause of injury-related deaths and disabilities throughout the world, which is characterized by a disruption of the normal physiology of the brain following trauma. It can potentially cause severe complications such as physical, cognitive, and emotional impairment. In addition to understanding traumatic brain injury pathophysiology, this review explains the therapeutic potential of stem cells following brain injury in two pathways: response of endogenous neurogenic cells and transplantation of exogenous stem cell therapy. After traumatic brain injuries, clinical evidence indicated that endogenous neural progenitor cells might play an important role in regenerative medicine to treat brain injury. This is due to an increased neurogenic regeneration ability of these cells following brain injury. Besides, exogenous stem cell transplantation has also accelerated immature neuronal development and increased endogenous cellular proliferation in the damaged brain region. Therefore, a better understanding of the endogenous neural stem cell's regenerative ability and the effect of exogenous stem cells on proliferation and differentiation ability may help researchers to understand how to increase functional recovery and tissue repair following injury.

5.
Front Cell Neurosci ; 15: 773375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924958

RESUMO

Spinal cord injury (SCI) is a devastating event characterized by severe motor, sensory, and autonomic dysfunction. Currently, there is no effective treatment. Previous studies showed neural growth factor (NGF) administration was a potential treatment for SCI. However, its targeted delivery is still challenging. In this study, neural stem cells (NSCs) were genetically modified to overexpress NGF, and we evaluated its therapeutic value following SCI. Four weeks after transplantation, we observed that NGF-NSCs significantly enhanced the motor function of hindlimbs after SCI and alleviated histopathological damage at the lesion epicenter. Notably, the survival NGF-NSCs at lesion core maintained high levels of NGF. Further immunochemical assays demonstrated the graft of NGF-NSCs modulated the microenvironment around lesion core via reduction of oligodendrocyte loss, attenuation of astrocytosis and demyelination, preservation of neurons, and increasing expression of multiple growth factors. More importantly, NGF-NSCs seemed to crosstalk with and activate resident NSCs, and high levels of NGF activated TrkA, upregulated cAMP-response element binding protein (CREB) and microRNA-132 around the lesion center. Taken together, the transplantation of NGF-NSCs in the subacute stage of traumatic SCI can facilitate functional recovery by modulating the microenvironment and enhancing endogenous neurogenesis in rats. And its neuroprotective effect may be mediated by activating TrkA, up-regulation of CREB, and microRNA-132.

6.
J Nanobiotechnology ; 19(1): 286, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556136

RESUMO

The strategy of using a combination of scaffold-based physical and biochemical cues to repair spinal cord injury (SCI) has shown promising results. However, integrating conductivity and neurotrophins into a scaffold that recreates the electrophysiologic and nutritional microenvironment of the spinal cord (SC) remains challenging. In this study we investigated the therapeutic potential of a soft thermo-sensitive polymer electroactive hydrogel (TPEH) loaded with nerve growth factor (NGF) combined with functional electrical stimulation (ES) for the treatment of SCI. The developed hydrogel exhibits outstanding electrical conductance upon ES, with continuous release of NGF for at least 24 days. In cultured nerve cells, TPEH loaded with NGF promoted the neuronal differentiation of neural stem cells and axonal growth, an effect that was potentiated by ES. In a rat model of SCI, TPEH combined with NGF and ES stimulated endogenous neurogenesis and improved motor function. These results indicate that the TPEH scaffold that combines ES and biochemical cues can effectively promote SC tissue repair.


Assuntos
Estimulação Elétrica/métodos , Hidrogéis/uso terapêutico , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Hidrogéis/química , Fator de Crescimento Neural , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais
7.
J Ethnopharmacol ; 259: 112957, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416248

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and is mainly caused by "kidney essence deficiency" which ultimately induces "encephala reduction". Therefore, herbal formulas possessing the efficacy of nourishing kidney essence or replenishing brain marrow are commonly served as effective strategies for AD treatment. Shenzao jiannao oral liquid (SZJN), a traditional Chinese preparation approved by the China Food and Drug Administration (CFDA), is used for the treatment of insomnia and mind fatigue at present for its efficacy of nourishing kidneys. In present study, we found that SZJN could improve cognitive function of AD-like mice. AIMS OF STUDY: This study aims to investigate the effects of SJZN on ameliorating cognitive deficits of AD-like mouse model, and to illuminate the underlying mechanisms from the perspective of neuroprotection and neurogenesis. MATERIALS AND METHODS: Kunming mice (28 ± 2 g) were randomly allocated into seven groups: control, sham, model, donepezil and SZJN groups (low, middle and high). The AD mouse model was established by Aß42 combined with scopolamine. SZJN were intragastrically administrated at doses of 0.3, 1.5 and 7.5 g/kg for 28 days. Morris water maze (MWM) test was applied to determine the cognitive function. Hematoxylin eosin (HE) and Nissl staining were carried out to evaluate pathological damages in the cortex and hippocampal tissues. To explore the protective effects of SZJN on multiple pathogenic factors of AD, protein levels of Aß42, glial fibrillary acidic protein (GFAP), Bax, Bcl-2, Caspase-3, synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and neurogenesis related proteins were assessed using Immunofluorescence (IF) and western blot analysis. In vitro, the AD cell model was established by transduction of APP695swe genes into Neural stem cells (NSCs) isolated from the hippocampal tissues of neonatal C57BL/6 mice. Cell viability assay and neurosphere formation assay were carried out to verify the efficacy of SZJN on proliferation of NSCs. RESULTS: Our results demonstrated that SZJN (1.5 g/kg and 7.5 g/kg) treatment significantly ameliorated cognitive deficits of AD-like mice. SZJN (7.5 g/kg) treatment significantly retarded the pathological damages including neuronal degeneration, neuronal apoptosis, Aß peptides aggregation and reaction of astrocytes in AD-like mice. In addition, SZJN (7.5 g/kg) increased the expression of BDNF and SYP, and restored the abnormal level of MDA and SOD in the brain of AD-like mice. Furthermore, SZJN treatment for 28 days remarkably increased the proliferation of NSCs evidenced by more Nestin+ and BrdU+ cells in the hippocampal DG regions, and increased the amount of mature neurons marked by NeuN both in the cortex and hippocampal DG regions. In vitro, SZJN treatement (16, 32, 64 mg/ml) promoted the proliferation of NSCs evidenced by the increased amount and enlarged size of the neurospheres (p < 0.05). CONCLUSIONS: Our findings indicated that SZJN could ameliorate cognitive deficits by protecting neurons from death and triggering endogenous neurogenesis. Therefore, SZJN may be considered as a promising agent to restore neuronal loss and deter the deterioration in AD patients.


Assuntos
Doença de Alzheimer/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Administração Oral , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Reação de Fuga/efeitos dos fármacos , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Nootrópicos/administração & dosagem , Fragmentos de Peptídeos , Escopolamina , Transdução de Sinais
8.
Front Physiol ; 11: 57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116767

RESUMO

Background: Ischemia stroke is the leading cause of death and long-term disability. Sanhua Decoction (SHD), a classic Chinese herbal prescription, has been used for ischemic stroke for about thousands of years. Here, we aim to investigate the neuroprotective effects of SHD on cerebral ischemia/reperfusion (CIR) injury rat models. Methods: The male Sprague-Dawley rats (body weight, 250-280 g; age, 7-8 weeks) were randomly divided into sham group, CIR group, and SHD group and were further divided into subgroups according to different time points at 6 h, 1, 3, 7, 14, 21, and 28 d, respectively. The SHD group received intragastric administration of SHD at 10 g kg-1 d-1. The focal CIR models were induced by middle cerebral artery occlusion according to Longa's method, while sham group had the same operation without suture insertion. Neurological deficit score (NDS) was evaluated using the Longa's scale. BrdU, doublecortin (DCX), and glial fibrillary acidic protein (GFAP) were used to label proliferation, migration, and differentiation of nerve cells before being observed by immunofluorescence. The expression of reelin, total tau (t-tau), and phosphorylated tau (p-tau) were evaluated by western blot and RT-qPCR. Results: SHD can significantly improve NDS at 1, 3, 7, and 14 d (p < 0.05), increase the number of BrdU positive and BrdU/DCX positive cells in subventricular zone at 3, 7, and 14 d (p < 0.05), upregulate BrdU/GFAP positive cells in the ischemic penumbra at 28 d after CIR (p < 0.05), and reduce p-tau level at 1, 3, 7, and 14 d (p < 0.05). There was no significant difference on reelin and t-tau level between three groups at each time points after CIR. Conclusions: SHD exerts neuroprotection probably by regulating p-tau level and promoting the proliferation, migration, and differentiation of endogenous neural stem cells, accompanying with neurobehavioral recovery.

9.
Curr Neurol Neurosci Rep ; 18(1): 1, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29372464

RESUMO

PURPOSE OF REVIEW: Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. RECENT FINDINGS: Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Células-Tronco Neurais/transplante , Animais , Humanos , Transplante de Células-Tronco/métodos
10.
Biomaterials ; 140: 88-102, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28641124

RESUMO

The latent regenerative potential of endogenous neural stem/progenitor cells (NSCs) in the adult mammalian brain has been postulated as a likely source for neural repair. However, the inflammatory and inhibitory microenvironment after traumatic brain injury (TBI) prohibits NSCs from generating new functional neurons to restore brain function. Here we report a biodegradable material, chitosan, which, when loaded with neurotrophin-3 (NT3) and injected into the lesion site after TBI, effectively engaged endogenous NSCs to proliferate and migrate to the injury area. NSCs differentiate and mature into functional neurons, forming nascent neural networks that further integrate into existing neural circuits to restore brain function. Three main actions of NT3-chitosan, i.e., pro-neurogenesis, anti-inflammation, and pro-revascularization, elicit significant regeneration after TBI. Our study suggests that through creating an optimal microenvironment, endogenous NSCs are capable of executing neural repair, thus widening the therapeutic strategies to treat TBI and perhaps stroke or other neurological conditions.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Quitosana/química , Portadores de Fármacos/química , Neurogênese/efeitos dos fármacos , Neurotrofina 3/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Injeções , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurotrofina 3/administração & dosagem , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos
11.
Brain Circ ; 3(3): 163-166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30276319

RESUMO

This mini-review highlights the innovative observation that transplanted human neural stem cells can bring about endogenous brain repair through the stimulation of multiple regenerative processes in the neurogenic area (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease (PD). In addition, we convey that identifying anti-inflammatory cytokines, therapeutic proteomes, and neurotrophic factors within the SVZ may be essential to induce brain repair and behavioral recovery. This work opens up a new area of research for further understanding the pathology and treatment of PD. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

12.
J Stroke Cerebrovasc Dis ; 26(2): 260-272, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743923

RESUMO

BACKGROUND AND OBJECTIVE: Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). METHODS: Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-ß-d-arabinofuranoside (Ara-C). RESULTS: Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. CONCLUSIONS: After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out.


Assuntos
Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Navegação Espacial/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/reabilitação , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Masculino , Microglia/patologia , Microglia/fisiologia , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-514684

RESUMO

Objective To observe the effects of neurotrophin 3 (NT3)-chitosan on motor function, and proliferation and differentiation of the neural stem cells (NSCs) in the injury area and subventricular zone (SVZ) in rats with motor cortex injury. Methods Sixty-five Wistar rats were divided into control group (n=7), injury group (n=29) and NT3-chitosan group (n=29). The motor cortex was aspirated and re-moved as cerebral injury model. NT3-chitosan was immediately implanted into the injured area after operation, and the control group re-ceived no intervention. Pellet reaching test was performed to detect the recovery of the forelimb function, HE staining was used to observe the lesion cavity size, and immunofluorescence staining was used to observe the proliferation and differentiation of NSCs 3 days, 7 days, 14 days, 1 month, 2 months and 3 months after operation. Results The grasp success rate was higher (F>6.00, P≤0.05), and the lesion cavity size was significantly smaller (F>629.5, P171.43, P155.06, P<0.001), the number of Dcx positive cells was significantly higher in the NT3-chitosan group than in the injury group (F=62.367, P<0.001), and the number of BrdU/Dcx positive cells was significantly higher in the NT3-chitosan group than in the control group (F=33.527, P<0.001). Conclusion NT3-chitosan could activate NSCs in the SVZ, and pro-mote endogenous neurogenesis and forelimb function recovery in rats after motor cortex injury.

14.
Sci China Life Sci ; 59(12): 1313-1318, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27796638

RESUMO

During the whole life cycle of mammals, new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles. Thanks to emerging methodologies, great progress has been made in the characterization of spinal cord endogenous neural stem cells (ependymal cells) and identification of their role in adult spinal cord development. As recently evidenced, both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis. This review introduces the concept of adult endogenous neurogenesis, the reaction of ependymal cells after adult spinal cord injury (SCI), the heterogeneity and markers of ependymal cells, the factors that regulate ependymal cells, and the niches that impact the activation or differentiation of ependymal cells.


Assuntos
Neurogênese , Neurônios/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Adulto , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Células-Tronco Neurais/fisiologia
15.
J Neuroimmunol ; 294: 46-55, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27138098

RESUMO

BACKGROUND: Despite the effective use of antibiotics, occurrences of mortality and neurological sequelae following Streptococcus pneumoniae meningitis remain high. METHODS: We investigated the neurogenesis of endogenous neural stem cells (NSCs) after inoculation with exogenous brain-derived neurotrophic factor (BDNF) in the hippocampus dentate gyrus following experimental S. pneumoniae meningitis using a double-labeling immunofluorescence analysis with 5-bromo-2'-deoxyuridine (BrdU), Nestin, DCX and NeuN. RESULTS: Our results showed that 7days after inoculation, the number of BrdU & Nestin co-labeled cells increased in the hippocampus in meningitis rats compared with control rats (p<0.05). But the number of DCX-positive cells decreased in the dentate gyrus of infected rats treated with saline (p<0.05). However, these cell numbers returned to close to normal-control levels in infected rats treated with BDNF (p>0.05). After treatment with exogenous BDNF, the number of BrdU & Nestin co-labeled cells increased in the hippocampus in both the meningitis rats and normal control rats (p<0.05), but this increase was more significant in the former (p<0.05). We found that the percentage of BrdU & DCX/BrdU co-labeled cells increased in infected rats treated with BDNF both 7days and 14days after inoculation in a greater proportion compared to other groups (p<0.05). No significant differences were found in the percentage of BrdU & NeuN/BrdU 28days after inoculation among all of the groups (p>0.05). CONCLUSION: Our findings suggest that S. pneumoniae meningitis activates the proliferation of endogenous NSCs, but impairs their early differentiation. Administration of exogenous BDNF might improve the neurogenesis of endogenous NSCs in the hippocampus and may provide a promising therapy after bacterial meningitis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Meningite Pneumocócica/patologia , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Streptococcus pneumoniae/fisiologia
16.
Neural Regen Res ; 11(2): 298-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27073384

RESUMO

Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2'-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2'-deoxyuridine-positive / anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.

17.
Neurochem Res ; 41(7): 1559-69, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26915108

RESUMO

Reelin is an extracellular matrix glycoprotein involved in the modulation of synaptic plasticity and essential for the proper radial migration of cortical neurons during development and for the integration and positioning of dentate granular cell progenitors; its expression is down-regulated as brain maturation is completed. Trimethyltin (TMT) is a potent neurotoxicant which causes selective neuronal death mainly localised in the CA1-CA3/hilus hippocampal regions. In the present study we analysed the expression of reelin and the modulation of endogenous neurogenesis in the postnatal rat hippocampus during TMT-induced neurodegeneration (TMT 6 mg/kg). Our results show that TMT administration induces changes in the physiological postnatal decrease of reelin expression in the hippocampus of developing rats. In particular, quantitative analysis of reelin-positive cells evidenced, in TMT-treated animals, a persistent reelin expression in the stratum lacunosum moleculare of Cornu Ammonis and in the molecular layer of Dentate Gyrus. In addition, a significant decrease in the number of bromodeoxyuridine (BrdU)-labeled newly-generated cells was also detectable in the subgranular zone of P21 TMT-treated rats compared with P21 control animals; no differences between P28 TMT-treated rats and age-matched control group were observed. In addition the neuronal commitment of BrdU-positive cells appeared reduced in P21 TMT-treated rats compared with P28 TMT-treated animals. Thus TMT treatment, administrated during development, induces an early reduction of endogenous neurogenesis and influences the hippocampal pattern of reelin expression in a temporally and regionally specific manner, altering the physiological decrease of this protein.


Assuntos
Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neurogênese/fisiologia , Serina Endopeptidases/biossíntese , Compostos de Trimetilestanho/farmacologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Proteína Reelina , Serina Endopeptidases/genética
18.
Brain Res ; 1640(Pt A): 104-113, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26855258

RESUMO

Traumatic brain injury (TBI) affects over 1.7 million people in the United States alone and poses many clinical challenges due to the variability of the injuries and complexity of biochemical mechanisms involved. Thus far, there is still no effective therapy for TBI. Failure of preventative therapeutic strategies has led studies focusing on regenerative approaches. Recent studies have shown evidence that mature brains harbors multipotent neural stem cells capable of becoming mature neurons in the neurogenic regions. Following brain insults including TBI, the injured brain has increased level of neurogenic response in the subventricular zone and dentate gyrus of the hippocampus and this endogenous response is associated with cognitive function following injury. In this review, we highlight recent development and strategies aimed at targeting this endogenous cell response to enhance post-TBI functional recovery. This article is part of a Special Issue entitled SI:Brain injury and recovery.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Humanos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
19.
Exp Neurol ; 275 Pt 3: 405-410, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25936874

RESUMO

In the mature mammalian brain, new neurons are generated throughout life in the neurogenic regions of the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Over the past two decades, extensive studies have examined the extent of adult neurogenesis in the SVZ and DG, the role of the adult generated new neurons in normal brain function and the underlying mechanisms regulating the process of adult neurogenesis. The extent and the function of adult neurogenesis under neuropathological conditions have also been explored in varying types of disease models in animals. Increasing evidence has indicated that these endogenous neural stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. This review will discuss the potential functions of adult neurogenesis in the injured brain and will describe the recent development of strategies aimed at harnessing this neurogenic capacity in order to repopulate and repair the injured brain following trauma.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Células-Tronco Neurais/patologia , Neurogênese , Neurônios/patologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia
20.
Proc Natl Acad Sci U S A ; 112(43): 13354-9, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460015

RESUMO

Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury.


Assuntos
Microambiente Celular/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurotrofina 3/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Análise de Variância , Animais , Quitosana/uso terapêutico , Eletromiografia , Potenciais Evocados/fisiologia , Fluorescência , Imuno-Histoquímica , Microscopia Imunoeletrônica , Células-Tronco Neurais/fisiologia , Neurotrofina 3/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...