Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Magn Reson Imaging ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225586

RESUMO

BACKGROUND: Ductal features alone may not offer high diagnostic sensitivity or most accurate disease severity of chronic pancreatitis (CP). PURPOSE: Diagnose CP based on multiparametric MRI and MRCP features. STUDY TYPE: Prospective. POPULATION: Between February 2019 and May 2021, 46 control (23 males, 49.3 ± 14.1 years), 45 suspected (20 males, 48.7 ± 12.5 years), and 46 definite (20 males, 53.7 ± 14.6 years) CP patients were enrolled at seven hospitals enrolled in the MINIMAP study. CP classification was based on imaging findings and clinical presentation. FIELD STRENGTH AND SEQUENCES: 1.5 T. T1-weighted (T1W) spoiled gradient echo, T1 map with variable flip angle, dual-echo Dixon, secretin-enhanced MRCP before and after secretin infusion. ASSESSMENT: Dual-echo fat fraction (FF), T1 relaxation time, extracellular volume (ECV), T1 signal intensity ratio of the pancreas to the spleen (T1 score), arterial-to-venous enhancement ratio (AVR), pancreatic tail diameter (PTD), pancreas volume, late gadolinium enhancement, pancreatic ductal elasticity (PDE), and duodenal filling grade of secretin-enhanced MRCP were measured. STATISTICAL TESTS: Logistic regression analysis generated CP-MRI and secretin-enhanced CP-SMRI scores. Receiver operating characteristics analysis was used to differentiate definite CP from control. Interobserver agreement was assessed using Lin's concordance correlation coefficient. RESULTS: Compared to control, definite CP cohort showed significantly higher dual-echo FF (7% vs. 11%), lower AVR (1.35 vs. 0.85), smaller PTD (2.5 cm vs. 1.95 cm), higher ECV (28% vs. 38%), and higher incidence of PDE loss (6.5% vs. 50%). With the cut-off of >2.5 CP-MRI score (dual-echo FF, AVR, and PTD) and CP-SMRI score (dual-echo FF, AVR, PTD, and PDE) had cross-validated area under the curves of 0.84 (sensitivity 87%, specificity 68%) and 0.86 (sensitivity 89%, specificity 67%), respectively. Interobserver agreement for both CP-MRI and CP-SMRI scores was 0.74. CONCLUSION: The CP-MRI and CP-SMRI scores yielded acceptable performance and interobserver agreement for the diagnosis of CP. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

2.
J Radiat Res ; 65(5): 628-639, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39174316

RESUMO

X-ray therapy aims to eliminate tumours while minimizing side effects. Intense mucositis is sometimes induced when irradiating the oral cavity with a dental metal crown (DMC). However, the underlying mechanisms of such inducing radiosensitization by DMC remain uncertain. This study explored the radiosensitizing mechanisms around DMCs in an interdisciplinary approach with cell experiments and Monte Carlo simulation with the PHITS code. Clonogenic survival and nuclear 53BP1 foci of a cell line derived from cervical cancer cells (HeLa cells) were measured post-irradiation with therapeutic X-rays near high-Z materials such as Pb or Au plates, and the experimental sensitizer enhancement ratio (SER) was obtained. Meanwhile, the dose enhancement ratio (DER) and relative biological effectiveness for DNA damage yields were calculated using the PHITS code, by considering the corresponding experimental condition. The experiments show the experimental SER values for cell survival and 53BP1 foci near metals are 1.2-1.4, which agrees well with the calculated DER values. These suggest that the radiosensitizing effects near metal are predominantly attributed to the dose increase. In addition, as a preclinical evaluation, the spatial distributions of DER near DMC are calculated using Computed Tomography Digital Imaging and Communications in Medicine (CT-DICOM) data and a simple tooth model. As a result, the DER values evaluated using the CT-DICOM data were lower than those from a simple tooth model. These findings highlight the challenge of evaluating radiosensitizing effects near DMCs using Digital Imaging and Communications in Medicine (DICOM) images due to volume-averaging effects and emphasize the need for a high-resolution (<1 mm) dose assessment method unaffected by these effects.


Assuntos
Sobrevivência Celular , Simulação por Computador , Metais , Humanos , Metais/química , Sobrevivência Celular/efeitos da radiação , Células HeLa , Relação Dose-Resposta à Radiação , Método de Monte Carlo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Radioterapia
3.
Acta Med Philipp ; 58(4): 59-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966611

RESUMO

Objectives: The stratum corneum (SC) remains an obstacle to the passage of drugs applied topically. Several investigations have focused on enhancing the penetration of drugs through the SC by integrating permeation enhancers (PE) into the drug formulation. Terpenes are among the PE utilized in formulations and are categorized by the regulatory bodies as generally recognized as safe (GRAS). This study aimed to comparatively analyze the skin permeation enhancing effect of terpenes on lipophilic drugs. Methods: The present study reviewed the effects of terpenes on the permeation of lipophilic small-molecule drugs through the skin using original research published between 2000 - 2022 retrieved from PubMed®. The search phrase used was (lipophilic drug) AND (terpene) AND (permeation enhancer). Results: Terpenes increase the percutaneous permeation of lipophilic small molecule drugs by 1.06 - 256.80-fold. Linear correlation analysis of terpenes' cLog P with enhancement ratio (ER) revealed moderate and strong positive correlations in pig skin (r = 0.21) and mouse skin (r = 0.27), and rat skin (r = 0.41) and human skin (r = 0.67), respectively. Drug cLog P is a poor (r = -0.06) predictor of permeation enhancement. Terpenes with cLog P higher than 2.40 had ER greater than 10. Higher ERs (>30) were recorded for nerolidol, carvacrol, borneol, terpineol, limonene, menthone, pulegone, and menthol among the terpene-chemical penetration enhancers. Conclusion: cLog P of terpene-based chemical permeation enhancers (CPE) is strongly correlated with ER of lipophilic drugs across human skin. Non-polar groups in terpenes and hydrogen bond interactions by terpenes with SC lipid enhance cutaneous drug penetration of lipophilic drugs.

4.
Eur Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750169

RESUMO

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

5.
Abdom Radiol (NY) ; 49(5): 1456-1466, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653813

RESUMO

PURPOSE: This study compared the predictive performance of the relative enhancement index (REI) derived from gadoxetic acid (GA)-enhanced MRI with that of the functional liver imaging score (FLIS) in estimating liver function among patients with chronic liver disease (CLD) or liver cirrhosis (LC) by validating them with the albumin-bilirubin (ALBI) grade. MATERIALS AND METHODS: We retrospectively examined 166 patients (79 women, 87 men; 57.4 years) who were diagnosed with LC or CLD and underwent GA-enhanced MRI between August 2020 and September 2023. The enhancement ratio (ER) is calculated using the formula: ER = [hepatobiliary phase liver signal (SI HBP20)-precontrast liver signal (SI pre)]/SI pre. The REI is calculated using the formula: REI = Liver Volume (LV) × ER. FLIS was assigned from the sum of three HBP image features, each scored between 0 and 2: liver parenchymal enhancement, biliary contrast excretion, and portal vein sign. Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff values of ER, REI, and FLIS in differentiating between ALBI grades. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated for REI and FLIS to distinguish the ALBI grades. Spearman's rank correlation was used to evaluate the ER, REI, and FLIS correlations between the ALBI grades. To evaluate inter-reader reliability for LV, ER, REI, and FLIS, intraclass correlation coefficient (ICC) was used. RESULTS: ROC curve analysis showed that the optimal cutoff value of REI for predicting ALBI Grade 1 was 899-905 for readers 1 and 2 and 461-477 for ALBI Grade 3, respectively. REI performed best in predicting ALBI Grade 1, achieving an accuracy range of 94%-92.2%, sensitivity of 94.9%-94.1%, and specificity of 91.7%-87.5% for readers 1 and 2, respectively. All parameters showed high accuracy in distinguishing ALBI Grade 3 from other grades. However, REI outperformed the others, showing an accuracy range of 98.8%-97.6%, sensitivity of 94.4%-94.4%, and specificity of 99.3%-98% for readers 1 and 2, respectively. REI showed the best and very strong correlation with ALBI for both readers. CONCLUSION: REI showed a very strong correlation with the ALBI grades for assessing liver function. It outperformed FLIS in predicting the ALBI grades, indicating its potential as a radiologic tool comparable to or better than FLIS in predicting liver function, especially given its dependence on liver volume.


Assuntos
Meios de Contraste , Gadolínio DTPA , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Testes de Função Hepática/métodos , Bilirrubina/sangue , Idoso , Fígado/diagnóstico por imagem , Valor Preditivo dos Testes , Hepatopatias/diagnóstico por imagem , Adulto , Cirrose Hepática/diagnóstico por imagem , Aumento da Imagem/métodos , Albumina Sérica , Reprodutibilidade dos Testes
6.
Biomed Phys Eng Express ; 10(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237176

RESUMO

To enhance the effect of radiation on the tumor without increasing the dose to the patient, the combination of high-Z nanoparticles with radiotherapy has been proposed. In this work, we investigate the effects of the physical parameters of nanoparticles (NPs) on the Dose Enhancement Factor (DEF), and on the Sensitive Enhancement Ratio (SER) by applying a version of the Linear Quadratic Model. A method for constructing voxelized realistic cell geometries in Monte Carlo simulations from confocal microscopy images was developed and applied to Gliobastoma Multiforme cell lines (U87 and U373). The comparison of simulations with realistic geometry and spherical geometry shows that there is significant impact on the survival curves obtained for the same irradiation conditions. Using this model, the DEF and the SER are determined as a function of the concentration, size and distribution of gold nanoparticles within the cell. For small NPs,dAuNP= 10 nm, no clear trend in the DEF and SER was observed when the number of NPs within the cell increases. Experimentally, the variable number of NPs measured inside the U373 cells (ranging between 1.48 × 105and 1.19 × 106) also did not influence much the observed cell survival upon irradiation of the cells with a Co-60 source. The same lack of trend is obtained when the Au content in the cell is kept constant, 0.897 mg/g, but the size of the NPs is changed. However, if the number of NPs is kept constant (7.91 × 105) and the size changes, there is a critical diameter above which the dose effect increases significantly. Using the realistic geometries, it was verified that the key parameter for the DEF and the SER enhancement is the volume fraction of Au in the cell, with NP size being a more important parameter than the number of NPs.


Assuntos
Nanopartículas Metálicas , Humanos , Dosagem Radioterapêutica , Ouro , Microscopia , Simulação por Computador
7.
Cardiovasc Intervent Radiol ; 47(2): 225-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273130

RESUMO

PURPOSE: To elucidate incidence rates of vascular lake phenomenon (VLP) in hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), hepatic metastasis (HMT) on transarterial angiography before chemoembolization, and to identity CT features predictive for it. MATERIALS AND METHODS: A comprehensive evaluation involved 665 subjects for incidence analysis, comprising 527 of HCC, 33 of ICC and 105 of HMT. VLP was characterized as intratumoral contrast material pool persisting late into venous phase. Incidences were cataloged on both super-selective and common hepatic artery angiography. For CT features analysis, a subset of 182 cases were analyzed. Enhancement ratio served as an index for comparative analysis of nodule enhancement degrees. RESULTS: In HCC, incidence of VLP ascertained via super-selective angiography was 13.5%, whereas it as 7.8% on common hepatic artery angiography. Remarkably, no incidences of VLP were recorded in either ICC or HMT cases. On pre-interventional CT, the prevalence of pseudocapsule was statistically greater in VLP group than Non-VLP group (66.6% vs. 37.6%, P = 0.015). The Houndsfield units (HU) of tumors in plain scan (P = 0.007), arterial phase (P = 0.001), venous phase (P = 0.041), arterial phase enhancement ratio (P < 0.001) were statistically higher in VLP group compared to Non-VLP group. Arterial phase enhancement ratio (P = 0.025), presence of pseudocapsule (P = 0.001), HU of tumor in plain scan (P = 0.035) serve as independent risk factors for VLP manifestation. CONCLUSION: VLP is a distinct angiography phenomenon uniquely associated with HCC. High arterial phase enhancement ratio, presence of pseudocapsule, high HU of tumor in plain scan are independent risk factors for VLP.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/terapia , Incidência , Angiografia , Meios de Contraste , Colangiocarcinoma/patologia , Artéria Hepática/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Tomografia Computadorizada por Raios X
8.
Acta Medica Philippina ; : 59-71, 2024.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1012802

RESUMO

Objectives@#The stratum corneum (SC) remains an obstacle to the passage of drugs applied topically. Several investigations have focused on enhancing the penetration of drugs through the SC by integrating permeation enhancers (PE) into the drug formulation. Terpenes are among the PE utilized in formulations and are categorized by the regulatory bodies as generally recognized as safe (GRAS). This study aimed to comparatively analyze the skin permeation enhancing effect of terpenes on lipophilic drugs. @*Methods@#The present study reviewed the effects of terpenes on the permeation of lipophilic small-molecule drugs through the skin using original research published between 2000 - 2022 retrieved from PubMed®. The search phrase used was (lipophilic drug) AND (terpene) AND (permeation enhancer). @*Results@#Terpenes increase the percutaneous permeation of lipophilic small molecule drugs by 1.06 – 256.80-fold. Linear correlation analysis of terpenes’ cLog P with enhancement ratio (ER) revealed moderate and strong positive correlations in pig skin (r = 0.21) and mouse skin (r = 0.27), and rat skin (r = 0.41) and human skin (r = 0.67), respectively. Drug cLog P is a poor (r = -0.06) predictor of permeation enhancement. Terpenes with cLog P higher than 2.40 had ER greater than 10. Higher ERs (>30) were recorded for nerolidol, carvacrol, borneol, terpineol, limonene, menthone, pulegone, and menthol among the terpene-chemical penetration enhancers. @*Conclusion@#cLog P of terpene-based chemical permeation enhancers (CPE) is strongly correlated with ER of lipophilic drugs across human skin. Non-polar groups in terpenes and hydrogen bond interactions by terpenes with SC lipid enhance cutaneous drug penetration of lipophilic drugs.


Assuntos
Terpenos , Pele
9.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958936

RESUMO

The current tools for validating dose delivery and optimizing new radiotherapy technologies in radiation therapy do not account for important dose modifying factors (DMFs), such as variations in cellular repair capability, tumor oxygenation, ultra-high dose rates and the type of ionizing radiation used. These factors play a crucial role in tumor control and normal tissue complications. To address this need, we explored the feasibility of developing a transportable cell culture platform (TCCP) to assess the relative biological effectiveness (RBE) of ionizing radiation. We measured cell recovery, clonogenic viability and metabolic viability of MDA-MB-231 cells over several days at room temperature in a range of concentrations of fetal bovine serum (FBS) in medium-supplemented gelatin, under both normoxic and hypoxic oxygen environments. Additionally, we measured the clonogenic viability of the cells to characterize how the duration of the TCCP at room temperature affected their radiosensitivity at doses up to 16 Gy. We found that (78±2)% of MDA-MB-231 cells were successfully recovered after being kept at room temperature for three days in 50% FBS in medium-supplemented gelatin at hypoxia (0.4±0.1)% pO2, while metabolic and clonogenic viabilities as measured by ATP luminescence and colony formation were found to be (58±5)% and (57±4)%, respectively. Additionally, irradiating a TCCP under normoxic and hypoxic conditions yielded a clonogenic oxygen enhancement ratio (OER) of 1.4±0.6 and a metabolic OER of 1.9±0.4. Our results demonstrate that the TCCP can be used to assess the RBE of a DMF and provides a feasible platform for assessing DMFs in radiation therapy applications.


Assuntos
Gelatina , Neoplasias , Humanos , Relação Dose-Resposta à Radiação , Hipóxia , Oxigênio/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular
10.
J Radiat Res ; 64(4): 685-692, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421442

RESUMO

An oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model was previously developed to estimate the survival fraction of cells exposed to charged-particle beams with wide dose and linear energy transfer (LET) ranges under various oxygen conditions. In the model, hypoxia-induced radioresistance was formulated based on the dose-averaged radiation quality. This approximation may cause inaccuracy in the estimation of the biological effectiveness of the radiation with wide variation in energy deposited to a sensitive volume per event, such as spread-out Bragg peak (SOBP) beams. The purpose of this study was to apply an alternative approach so as to consider the energy depositions on an event-by-event basis. The production probability of radiation-induced lesions per energy was formulated with oxygen partial pressure to account for the hypoxia-induced radioresistance. The reduction in the oxygen enhancement ratio for high-LET radiations was modeled by reducing the sensitive-volume size and increasing the saturation energy in microdosimetry. The modified OSMK model was tested against the reported survival data of three cell lines exposed to six species of ions with wide dose and LET ranges under aerobic and hypoxic conditions. The model reasonably reproduced the reported cell survival data. To evaluate the event-by-event approach, survival distributions of Chinese hamster ovary cells exposed to SOBP beams were estimated using the original and modified OSMK models. The differences in the estimated survival distributions between the models were marginal even under extreme hypoxia. The event-by-event approach improved the theoretical validity of the OSMK model. However, the original OSMK model can still provide an accurate estimation of the biological effectiveness of therapeutic radiations.


Assuntos
Hipóxia , Oxigênio , Cricetinae , Animais , Oxigênio/metabolismo , Eficiência Biológica Relativa , Cricetulus , Células CHO , Hipóxia/tratamento farmacológico , Íons
11.
J Appl Clin Med Phys ; 24(9): e14014, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37161820

RESUMO

INTRODUCTION: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS: A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and ß parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS: For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION: The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Eficiência Biológica Relativa , Oxigênio , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons , Hipóxia/etiologia , Planejamento da Radioterapia Assistida por Computador/métodos
12.
Phys Med ; 108: 102553, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021608

RESUMO

PURPOSE: Normal tissue sparing has been shown in preclinical studies under the ultra-fast dose rate condition, so-called FLASH radiotherapy. The preclinical and clinical FLASH studies are being conducted with various radiation modalities such as photons, protons, and heavy ions. The aim of this study is to propose a model to predict the dependency of the FLASH effect on linear energy transfer (LET) by quantifying the oxygen depletion. METHODS: We develop an analytical model to examine the FLASH sparing effect by incorporating time-varying oxygen depletion equation and oxygen enhancement ratios according to LET. The variations in oxygen enhancement ratio (OER) are quantified over time with different dose rate (Gy/s) and LET (keV/µm). The FLASH sparing effect (FSE) is defined as the ratio of DFLASH/Dconv where Dconv is the reference absorbed dose delivered at the conventional dose rate, and DFLASH is the absorbed dose delivered at a high dose rate that causes the same amount of biological damage. RESULTS: Our model suggests that the FLASH effect is significant only when the oxygen amount is at an intermediate level (10 âˆ¼ 100 mmHg). The FSE is increased as LET decreases, suggesting that LET less than 100 keV/µm is required to induce FLASH sparing effects in normal tissue. CONCLUSIONS: Oxygen depletion and recovery provide a quantitative model to understand the FLASH effect. These results highlight the FLASH sparing effects in normal tissue under the conditions with the intermediate oxygen level and low-LET region.


Assuntos
Fótons , Prótons , Oxigênio , Dosagem Radioterapêutica
13.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904447

RESUMO

The purpose of the study is to develop and assess mucoadhesive in situ nasal gel formulations of loratadine and chlorpheniramine maleate to advance the bioavailability of the drug as compared to its conventional dosage forms. The influence of various permeation enhancers, such as EDTA (0.2% w/v), sodium taurocholate (0.5% w/v), oleic acid (5% w/v), and Pluronic F 127 (10% w/v), on the nasal absorption of loratadine and chlorpheniramine from in situ nasal gels containing different polymeric combinations, such as hydroxypropyl methylcellulose, Carbopol 934, sodium carboxymethylcellulose, and chitosan, is studied. Among these permeation enhancers, sodium taurocholate, Pluronic F127 and oleic acid produced a noticeable increase in the loratadine in situ nasal gel flux compared with in situ nasal gels without permeation enhancer. However, EDTA increased the flux slightly, and in most cases, the increase was insignificant. However, in the case of chlorpheniramine maleate in situ nasal gels, the permeation enhancer oleic acid only showed a noticeable increase in flux. Sodium taurocholate and oleic acid seems to be a better and efficient enhancer, enhancing the flux > 5-fold compared with in situ nasal gels without permeation enhancer in loratadine in situ nasal gels. Pluronic F127 also showed a better permeation, increasing the effect by >2-fold in loratadine in situ nasal gels. In chlorpheniramine maleate in situ nasal gels with EDTA, sodium taurocholate and Pluronic F127 were equally effective, enhancing chlorpheniramine maleate permeation. Oleic acid has a better effect as permeation enhancer in chlorpheniramine maleate in situ nasal gels and showed a maximum permeation enhancement of >2-fold.

14.
Phys Med ; 107: 102537, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780791

RESUMO

[Purpose] Treatment plans for carbon ion radiotherapy (CIRT) in Japan are designed to uniformly deliver the prescribed clinical dose based on the radiosensitivity of human salivary gland (HSG) cells to the planning target volume (PTV). However, sensitivity to carbon beams varies between cell lines, that is, it should be checked that the clinical dose distribution based on the cell radiosensitivity of the treatment site is uniform within the PTV. [Methods] We modeled the linear energy transfer (LET) dependence of the linear-quadratic (LQ) coefficients specific to prostate cancer, which accounts for the majority of CIRT. This was achieved by irradiating prostate cancer cells (PC3) with X-rays from a 4 MV-Linac and carbon beams with different LETs of 11.1-214.3 keV/µm. By using the radiosensitivity of PC3 cells derived from cellular experiments, we reconstructed prostate-cancer-specific clinical dose distributions on patient computed tomography (CT). [Results] The LQ coefficient, α, of PC3 cells was larger than that of HSG cells at low (<50 keV/µm) LET and smaller at high (>50 keV/µm) LET, which was validated by cellular experiments performed on rectangular SOBPs. The reconstructed dose distribution on patient CT was sloped when 1 fraction incident from the one side of the patient was considered, but remained uniform from the sum of 12 fractions of the left-right opposing beams (as is used in clinical practice). [Conclusion] Our study reveals the inhomogeneity of clinical doses in single-field plans calculated using the PC3 radiosensitivity data. However, this inhomogeneity is compensated by using the combination of left-right opposing beams.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Neoplasias da Próstata/radioterapia , Carbono , Planejamento da Radioterapia Assistida por Computador/métodos
15.
Journal of Practical Radiology ; (12): 2026-2029,2077, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1020135

RESUMO

Objective To explore the application value of multi-parameters of energy spectrum CT in the pathological classification of nephroblastoma.Methods A total of 30 children with nephroblastoma who were underwent energy spectrum CT examination were enrolled in this study,retrospectively.The iodine(I)value and CT value of tumor and abdominal aorta were collected in three phases,respectively.The normalized iodine concentration(NIC),1 value enhancement ratio,CT value enhancement ratio and I value/CT value enhancement ratio were calculated and statistically analyzed.Results Statistical analysis showed that in the comparison of NIC and multi-parameters,there were statistical differences between the three types of nephroblastoma(P<0.05).In the comparison of the slopes of energy spectrum curves,the slopes from large to small were respectively germ nephroblastoma,mixed nephroblastoma and mesenchymal nephroblastoma,and the differences were statistically significant(P<0.05).Through receiver operating characteristic(ROC)curve analysis,it was found that the NIC and I value/CT value enhancement ratio and slope of energy spectrum curve in the identification of high-risk type and medium-risk type of nephroblastoma,the area under the curve(AUC)was 0.91-0.96,and the sensitivity was 75%-95%,and the specificity was above 90%.Conclusion Multi-parameters of energy spectrum CT can be used as the basis for the pathological classification of nephroblastoma.NIC and I value/CT value enhancement ratio and slope of energy spectrum curve can be used as differential indicators of high and medium-risk pathological types of nephroblastoma.

16.
World J Gastroenterol ; 28(44): 6310-6313, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36504551

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies because of its high invasiveness and metastatic potential. Computed tomography (CT) is often used as a preliminary diagnostic tool for pancreatic cancer, and it is increasingly used to predict treatment response and disease stage. Recently, a study published in World Journal of Gastroenterology reported that quantitative analysis of preoperative enhanced CT data can be used to predict postoperative overall survival in patients with PDAC. A tumor relative enhancement ratio of ≤ 0.7 indicates a higher tumor stage and poor prognosis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Tomografia Computadorizada por Raios X , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Biomarcadores , Neoplasias Pancreáticas
17.
Adv Exp Med Biol ; 1395: 249-254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527645

RESUMO

Despite advancements in functional imaging, the resolution of modern techniques is still limited with respect to the tumour microenvironment. Radiotherapy strategies to counteract e.g., tumour hypoxia based on functional imaging therefore carry an inherent uncertainty that could compromise the outcome of the treatment. It was the aim of this study to investigate the impact of variations in the radiosensitivity of hypoxic tumours in small regions in comparison to the resolution of current imaging techniques on the probability of obtaining tumour control. A novel in silico model of three-dimensional tumour vasculature and oxygenation was used to model three tumours with different combinations of diffusion-limited, perfusion-limited and anaemic hypoxia. Specifically, cells in the transition region from a tumour core with diffusion-limited hypoxia to the well-oxygenated tumour rim were considered with respect to their differential radiosensitivity depending on the character of the hypoxia. The results showed that if the cells in the transition region were under perfusion-limited hypoxia, the tumour control probability was substantially lower in comparison to the case when the cells were anaemic (or under diffusion-limited hypoxia). This study therefore demonstrates the importance of differentiating between different forms of hypoxia on a scale currently unattainable to functional imaging techniques, lending support to the use and importance of radiobiological modelling of the cellular radiosensitivity and response at microscale.


Assuntos
Hipóxia , Neoplasias , Humanos , Neoplasias/radioterapia , Tolerância a Radiação , Simulação por Computador , Perfusão , Hipóxia Celular , Oxigênio , Microambiente Tumoral
18.
Pharmaceutics ; 14(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297640

RESUMO

Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation of AuNP-assisted radiation therapy (RT) paradigm. The aim of this study was to investigate radiosensitization mediated by PSMA-targeted AuNPs irradiated by a 6 MV radiation beam at different depths to explore feasibility of AuNP-assisted prostate cancer RT under clinically relevant conditions. PSMA-targeted AuNPs (PSMA-AuNPs) were synthesized by conjugating PSMA antibodies onto PEGylated AuNPs through EDC/NHS chemistry. Confocal fluorescence microscopy was used to verify the active targeting of the developed PSMA-AuNPs. Transmission electron microscopy (TEM) was used to demonstrate the intracellular biodistribution of PSMA-AuNPs. LNCaP prostate cancer cells treated with PSMA-AuNPs were irradiated on a Varian 6 MV LINAC under varying depths (2.5 cm, 10 cm, 20 cm, 30 cm) of solid water. Clonogenic assays were carried out to determine the in vitro cell survival fractions. A Monte Carlo (MC) model developed on TOPAS platform was then employed to determine the nano-scale radial dose distribution around AuNPs, which was subsequently used to predict the radiation dose response of LNCaP cells treated with AuNPs. Two different cell models, with AuNPs located within the whole cell or only in the cytoplasm, were used to assess how the intracellular PSMA-AuNP biodistribution impacts the prostate cancer radiosensitization. Then, MC-based microdosimetry was combined with the local effect model (LEM) to calculate cell survival fraction, which was benchmarked against the in vitro clonogenic assays at different depths. In vitro clonogenic assay of LNCaP cells demonstrated the depth dependence of AuNP radiosensitization under clinical megavoltage beams, with sensitization enhancement ratio (SER) of 1.14 ± 0.03 and 1.55 ± 0.05 at 2.5 cm depth and 30 cm depth, respectively. The MC microdosimetry model showed the elevated percent of low-energy photons in the MV beams at greater depth, consequently resulting in increased dose enhancement ratio (DER) of AuNPs with depth. The AuNP-induced DER reached ~5.7 and ~8.1 at depths of 2.5 cm and 30 cm, respectively. Microdosimetry based LEM accurately predicted the cell survival under 6 MV beams at different depths, for the cell model with AuNPs placed only in the cell cytoplasm. TEM results demonstrated the distribution of PSMA-AuNPs in the cytoplasm, confirming the accuracy of MC microdosimetry based LEM with modelled AuNPs distributed within the cytoplasm. We conclude that AuNP radiosensitization can be achieved under megavoltage clinical radiotherapy energies with a dependence on tumor depth. Furthermore, the combination of Monte Carlo microdosimetry and LEM will be a valuable tool to assist with developing AuNP-aided radiotherapy paradigm and drive clinical translation.

19.
J Neurooncol ; 160(2): 463-472, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36282354

RESUMO

PURPOSE: Gliomas are characterized by immunosuppressive features. Programmed death-ligand 1 (PD-L1) is overexpressed and plays an important role in the immunosuppressive tumor microenvironments of gliomas. However, the radiographical and prognostic significance of PD-L1 expression remains unclear. METHODS: Using tissue microarrays, we evaluated PD-L1 expression and the presence of tumor-infiltrating CD4+ and CD8+T cells and CD204+macrophages using immunohistochemical analysis. Contrast enhancement area and fluid-attenuated inversion recovery (FLAIR) hyperintensity area were evaluated by two-dimensional analysis. Kaplan-Meier analysis was performed to evaluate the overall survival time in 44 patients with isocitrate dehydrogenase (IDH)-wildtype glioblastoma. RESULTS: We evaluated 71 patients with newly diagnosed high-grade gliomas who were treated between October 1998 and April 2012. PD-L1 expression was observed in 15 patients (21.1%). A significant association of PD-L1 expression with the CD4+ and CD8+ T cell densities, but not with CD204+ macrophage densities, was observed (p = 0.025, p = 0.0098, and p = 0.19, respectively). The FLAIR-to-enhancement ratio was significantly higher in PD-L1+ tumors than in PD-L1- tumors (p = 0.0037). PD-L1 expression did not show a significant association with the median survival time (PD-L1 + vs. PD-L1-: 19.2 vs 14.9 months; p = 0.39). CONCLUSION: PD-L1 expression was associated with CD4+ and CD8+ T cell infiltration, indicating a significant interplay between PD-L1 and immune cells. The positive correlation of PD-L1 expression with an increased FLAIR-to-enhancement ratio suggested that radiographical characteristics could reflect the immunological status. Our results did not support the prognostic impact of PD-L1 in patients with IDH-wildtype glioblastomas.


Assuntos
Glioblastoma , Glioma , Humanos , Antígeno B7-H1/metabolismo , Prognóstico , Linfócitos do Interstício Tumoral/patologia , Glioma/patologia , Glioblastoma/patologia , Isocitrato Desidrogenase/metabolismo , Microambiente Tumoral
20.
Biomed Phys Eng Express ; 8(6)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36260973

RESUMO

In proton therapy, a constant relative biological effectiveness (RBE) factor of 1.1 is applied although the RBE has been shown to depend on factors including the Linear Energy Transfer (LET). The biological effectiveness of radiotherapy has also been shown to depend on the level of oxygenation, quantified by the oxygen enhancement ratio (OER). To estimate the biological effectiveness across different levels of oxygenation the RBE-OER-weighted dose (ROWD) can be used. To investigate the consistency between different approaches to estimate ROWD, we implemented and compared OER models in a Monte Carlo (MC) simulation tool. Five OER models were explored: Wenzl and Wilkens 2011 (WEN), Tinganelliet al2015 (TIN), Strigariet al2018 (STR), Dahleet al2020 (DAH) and Meinet al2021 (MEI). OER calculations were combined with a proton RBE model and the microdosimetric kinetic model for ROWD calculations. ROWD and OER were studied for a water phantom scenario and a head and neck cancer case using hypoxia PET data for the OER calculation. The OER and ROWD estimates from the WEN, MEI and DAH showed good agreement while STR and TIN gave higher OER values and lower ROWD. The WEN, STR and DAH showed some degree of OER-LET dependency while this was negligible for the MEI and TIN models. The ROWD for all implemented models is reduced in hypoxic regions with an OER of 1.0-2.1 in the target volume. While some variations between the models were observed, all models display a large difference in the estimated dose from hypoxic and normoxic regions. This shows the potential to increase the dose or LET in hypoxic regions or reduce the dose to normoxic regions which again could lead to normal tissue sparing. With reliable hypoxia imaging, RBE-OER weighting could become a useful tool for proton therapy plan optimization.


Assuntos
Terapia com Prótons , Humanos , Hipóxia/radioterapia , Oxigênio , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA