Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 6988-7000, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847144

RESUMO

Heatwaves are a global issue that threaten microbial populations and deteriorate ecosystems. However, how river microbial communities respond to heatwaves and whether and how high temperatures exceed microbial adaptation remain unclear. In this study, we proposed four types of pulse temperature-induced microbial responses and predicted the possibility of microbial adaptation to high temperature in global rivers using ensemble machine learning models. Our findings suggest that microbial communities in parts of South American (e.g., Brazil and Chile) and Southeast Asian (e.g., Vietnam) countries are likely to change due to heatwave disturbance from 25 to 37°C for consecutive days. Furthermore, the microbial communities in approximately 48.4% of the global river gauge stations are prone to fast stress inadaptation, with approximately 76.9% of these stations expected to exceed microbial adaptation after heatwave disturbances. If emissions of particulate matter with sizes not more than 2.5 µm (PM2.5, an indicator of human activities) increase by twofold, the number of global rivers associated with the fast stress adaptation type will decrease by ~13.7% after heatwave disturbances. Understanding microbial responses is crucially important for effective ecosystem management, especially for fragile and sensitive rivers facing heatwave events.


Assuntos
Ecossistema , Rios , Humanos , Temperatura , Brasil , Chile
2.
Ecol Evol ; 13(5): e10090, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223308

RESUMO

The National Forestry Commission of Mexico continuously monitors forest structure within the country's continental territory by the implementation of the National Forest and Soils Inventory (INFyS). Due to the challenges involved in collecting data exclusively from field surveys, there are spatial information gaps for important forest attributes. This can produce bias or increase uncertainty when generating estimates required to support forest management decisions. Our objective is to predict the spatial distribution of tree height and tree density in all Mexican forests. We performed wall-to-wall spatial predictions of both attributes in 1-km grids, using ensemble machine learning across each forest type in Mexico. Predictor variables include remote sensing imagery and other geospatial data (e.g., mean precipitation, surface temperature, canopy cover). Training data is from the 2009 to 2014 cycle (n > 26,000 sampling plots). Spatial cross validation suggested that the model had a better performance when predicting tree height r 2 = .35 [.12, .51] (mean [min, max]) than for tree density r 2 = .23 [.05, .42]. The best predictive performance when mapping tree height was for broadleaf and coniferous-broadleaf forests (model explained ~50% of variance). The best predictive performance when mapping tree density was for tropical forest (model explained ~40% of variance). Although most forests had relatively low uncertainty for tree height predictions, e.g., values <60%, arid and semiarid ecosystems had high uncertainty, e.g., values >80%. Uncertainty values for tree density predictions were >80% in most forests. The applied open science approach we present is easily replicable and scalable, thus it is helpful to assist in the decision-making and future of the National Forest and Soils Inventory. This work highlights the need for analytical tools that help us exploit the full potential of the Mexican forest inventory datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA