Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Talanta ; 282: 126993, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383724

RESUMO

Exploring the relationship between key regulation molecules (such as telomerase and protein tyrosine kinase 7) during epithelial-mesenchymal transformation of cells is beneficial for studying malignant tumor metastasis. Fluorescence is usually used for real-time monitoring the distribution and expression of regulatory molecules in living cells. However, the recognition function of these classical nanoprobes is "always active" due to the absence of exogenous control, which leads to the amplification of both the background signal and the response signal, making it difficult to distinguish changes in biomolecule expression levels. To improve the fluorescence ratio between tumor and normal cells, we constructed near-infrared light-activatable nanoprobes by engineering the functional units of catalytic hairpin assembly and integrating upconversion luminescence nanoparticles. Under near-infrared light irradiation, the nanoparticles, serving as a near-infrared-to-ultraviolet light transducer, induced the photolysis of the photo-cleavable linkers sealed in hairpins. The recognition function of the nanoprobes can be controlled by near-infrared light, preventing them from recognizing the targets in non-irradiated regions. By employing the nanoprobes, we realized simultaneous imaging of two regulatory molecules in living cells and observed an increase in telomerase activity and a decrease in protein tyrosine kinase 7 expression during drug-induced epithelial-mesenchymal transformation. This work provides a promising method for revealing changes and relationships of regulatory molecules during tumor metastasis.

2.
J Cancer ; 15(17): 5719-5728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308677

RESUMO

Background: The Abelson-Related Gene (ABL2) is expressed in various malignancies. However, its role in gastric cancer (GC) regarding tumor proliferation, metastasis, and invasion remains unclear. Methods: ABL2 expression in clinical specimens was assessed using quantitative real-time fluorescence PCR (qRT-PCR). Western blotting and immunofluorescence assay determined protein levels. Additionally, Transwell migration and invasion, cell counting kit-8 (CCK-8) and colony-formation assays analyzed the effect of ABL2 on GC cells. Protein levels related to GC cells were assessed through Western blotting. The effects of si-ABL2 combined with GA-017 that activated YAP on cell migration, invasion and proliferation were investigated. Results: ABL2 expression was upregulated in human GC tissues compared to paracancer tissues, and it was positively related to tumor node metastasis classification (TNM) stage. Furthermore, high ABL2 levels promoted the proliferation, metastasis, and invasion capacity in GC cells. Elevated ABL2 expression enhanced the expression of MMP2, MMP9, and PCNA while decreasing TIMP1 and TIMP2 expression. It also increased the p-SMAD2/3 expression and YAP expression, decreased the expression of p-YAP in GC cells. Furthermore, GA-017 increased ABL2 expression in MGC-803 cells and counteracted the effects of si-ABL2 on cell migration, invasion and proliferation. Conclusion: These findings indicated that heightened ABL2 expression could activate TGF-ß/SMAD2/3 and YAP signaling pathway, promoting epithelial mesenchymal transformation (EMT), and enhancing multiplication, metastasis, and invasion in GC cells.

3.
Eur J Pharm Sci ; 202: 106894, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39245357

RESUMO

M2-like tumor-associated macrophages (M2-TAMs) are closely correlated with metastasis and poor clinical outcomes in lung squamous cell carcinoma (LUSC). Previous studies have demonstrated that STAT6 is an important signaling molecule involved in the polarization of M2-TAMs, EMT is the main way for TAMs to promote tumor progression. However, little attention has been paid to the effect of STAT6 inhibition on LUSC, and it is difficult to achieve an ideal gene silencing effect in immune cells using traditional gene transfection methods. Here, we investigated the optimal concentration of 12-myristic 13-acetate (PMA), lipopolysaccharide (LPS) for the induction of THP-1 into M1-TAMs and M2-TAMs. The expression of pSTAT6 and STAT6 was confirmed in three types of macrophages, and it was demonstrated that pSTAT6 can be used as a specific target of M2-TAMs derived from THP-1. Ultrasound-mediated nanobubble destruction (UMND) is a non-invasive and safe gene delivery technology. We also synthesized PLGA-PEI nanobubbles (NBs) to load and deliver STAT6 small interfering RNA (siRNA) into M2-TAMs via UMND. The results show that the NBs could effectively load with siRNA and had good biocompatibility. We found that UMND enhanced the transfection efficiency of siRNA, as well as the silencing effect of pSTAT6 and the inhibition of M2-TAMs. Simultaneously, when STAT6 siRNA entered M2-TAMs by UMND, proliferation, migration, invasion and EMT in LUSC cells could be inhibited via the transforming growth factor-ß1 (TGF-ß1) pathway. Therefore, our results confirm that UMND is an ideal siRNA delivery strategy, revealing its potential to inhibit M2-TAMs polarization and ultimately treat LUSC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , RNA Interferente Pequeno , Fator de Transcrição STAT6 , Fator de Crescimento Transformador beta1 , Humanos , Fator de Transcrição STAT6/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Ondas Ultrassônicas , Células THP-1 , Movimento Celular/efeitos dos fármacos
4.
Exp Hematol Oncol ; 13(1): 83, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138521

RESUMO

BACKGROUND: The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known. METHODS: Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo. RESULTS: The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC. CONCLUSIONS: The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.

5.
Int J Gen Med ; 17: 3433-3442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135633

RESUMO

Background: VPS72 is highly expressed in hepatocellular carcinoma and prostate cancer, participating in various cellular processes such as gene transcription, replication, DNA repair, maintenance of genome integrity, and cancer progression. However, its role in colorectal cancer remains unknown. Methods: Bioinformatic methods were used to analyze gene expression, correlation and patient survival. Western blotting, colony formation assays and animal experiments were used to evaluate the function of VPS72 in colon cancer in vivo and in vitro. Results: VPS72 was highly expressed in colon cancer tissues and correlated with poor overall survival (P<0.05) and relapse free survival (P<0.01). Furthermore, patients with III/IV clinical stage (P<0.001), N1 nodal metastasis (P<0.001) or N2 nodal metastasis (P<0.05) status had poor overall survival. Further analysis showed that VPS72 is correlated with proliferation and EMT biomarkers. Western blotting, colony formation assays and animal experiments showed that VPS72 overexpression promoted colon cancer proliferation and EMT progress. Conclusion: Our study found that VPS72 was correlated with poor overall survival in colon cancer patients, and high expressed level of VPS72 promoted colon cancer progression, indicating its role as a potential prognosis biomarker.

6.
Heliyon ; 10(14): e34015, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092260

RESUMO

While strides in cancer treatment continue to advance, the enduring challenges posed by cancer metastasis and recurrence persist as formidable contributors to the elevated mortality rates observed in cancer patients. Among the multifaceted factors implicated in tumor recurrence and metastasis, cancer stem cells (CSCs) emerge as noteworthy entities due to their inherent resistance to conventional therapies and heightened invasive capacities. Characterized by their notable abilities for self-renewal, differentiation, and initiation of tumorigenesis, the eradication of CSCs emerges as a paramount objective. Recent investigations increasingly emphasize the pivotal role of post-translational protein modifications (PTMs) in governing the self-renewal and replication capabilities of CSCs. This review accentuates the critical significance of several prevalent PTMs and the intricate interplay of PTM crosstalk in regulating CSC behavior. Furthermore, it posits that the manipulation of PTMs may offer a novel avenue for targeting and eliminating CSC populations, presenting a compelling perspective on cancer therapeutics with substantial potential for future applications.

7.
Transl Cancer Res ; 13(6): 2847-2859, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988940

RESUMO

Background: Osteosarcoma (OS) is a malignancy originating from mesenchymal tissue. Microfibril-associated protein 2 (MFAP2) plays a crucial role in cancer, notably promoting epithelial-mesenchymal transition (EMT). However, its involvement in OS remains unexplored. Methods: MFAP2 was silenced in U2OS cells using shRNA targeting MFAP2 (sh-MFAP2) and validated by quantitative real-time polymerase chain reaction (qRT-PCR). We extracted gene chip data of MFAP2 from multiple databases (GSE28424, GSE42572, and GSE126209). Correlation analyses between MFAP2 and the Notch1 pathway identified through the gene set variation analysis (GSVA) enrichment analysis were conducted using the Pearson correlation method. Cellular behaviors (viability, migration, and invasion) were assessed via the Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays. EMT markers (N-cadherin, vimentin, and ß-catenin) and Notch1 levels were examined by western blotting and qRT-PCR. Cell morphology was observed microscopically to evaluate EMT. Finally, the role of MFAP2 in OS was validated through a xenograft tumor model. Results: OS cell lines exhibited higher MFAP2 mRNA expression than normal osteoblasts. MFAP2 knockdown in U2OS cells significantly reduced viability, migration, and invasion, along with downregulation of N-cadherin and vimentin, as well as upregulation of ß-catenin. MFAP2 significantly correlated with the Notch1 pathway in OS and its knockdown inhibited Notch1 protein expression. Furthermore, Notch1 activation reversed the inhibitory effects of MFAP2 knockdown on the malignant characteristic of U2OS cells. Additionally, MFAP2 knockdown inhibited tumor growth, expression levels of EMT markers, and Notch1 expression in OS tumor tissues. Conclusions: Our study revealed that MFAP2 was an upstream regulator of the Notch1 signaling pathway to promote EMT in OS. These findings suggested MFAP2 as a potential OS therapy target.

8.
Oral Dis ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007193

RESUMO

OBJECTIVE: To analyze the biological effect and mechanism of areca nut extract (ANE) on human oral keratinocyte (HOK) cells. MATERIALS AND METHODS: The effect of gradient concentration of ANE on the proliferation activity of HOK cells was analyzed by cell counting kit-8 (CCK-8) assays. The differentially expressed genes between the ANE group and control group HOK cells were analyzed by second-generation transcriptome sequencing. Real-time PCR and western blot were, respectively, used to analyze the expression of AREG gene and protein in HOK cells. After AREG gene overexpression or knockdown, the proliferation, migration, and expression of proteins related to epithelial-mesenchymal transformation (EMT), MAPK signal pathway in HOK cells were, respectively, detected by CCK-8, wound healing, transwell, and western blot assays. RESULTS: ANE (500 µg/mL) promoted the proliferation and migration of HOK cells, ANE (2 mg/mL) promoted the EMT of HOK cells, and ANE (50 mg/mL) inhibited the proliferation of HOK cells. AREG knockdown inhibited ANE-induced proliferation and migration of HOK cells, while AREG overexpression promoted the proliferation and migration of HOK cells. Western blot assay showed that ANE activated MAPK signal pathway by upregulating AREG protein in HOK cells. CONCLUSIONS: ANE promoted HOK cell proliferation, migration, and EMT by mediating AREG-MAPK signaling pathway.

9.
Regen Biomater ; 11: rbae081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040514

RESUMO

Proliferative vitreoretinopathy (PVR) is a common cause of vision loss after retinal reattachment surgery and ocular trauma. The key pathogenic mechanisms of PVR development include the proliferation, migration and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) activated by the growth factors and cytokines after surgery. Although some drugs have been tried in PVR treatments as basic investigations, the limited efficacy remains an obstacle, which may be due to the single pharmacological action and lack of targeting. Herein, the anti-proliferative Daunorubicin and anti-inflammatory Dexamethasone were co-loaded in the RPEs-derived exosomes (Exos), obtaining an Exos-based dual drug-loaded nanocarrier (Exos@D-D), and used for multiple PVR therapy. Owing to the advantages of homologous Exos and the dual drug loading, Exos@D-D showed good RPEs targeting as well as improved uptake efficiency, and could inhibit the proliferation, migration, as well as EMT of RPEs effectively. The animal studies have also demonstrated that Exos@D-D effectively inhibits the production of proliferative membranes and prevents the further development of inflammation, shows significant therapeutic effects on PVR and good biocompatibility. Such Exos-based dual drug-loaded nanocarrier investigation not only provides a promising approach for multifunctional exosome drug delivery systems construction, but also has great potential in PVR clinical therapy application.

10.
J Cancer Res Clin Oncol ; 150(7): 342, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980538

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA), characterized by high heterogeneity and extreme malignancy, has a poor prognosis. Doublecortin-like kinase 1 (DCLK1) promotes a variety of malignant cancers in their progression. Targeting DCLK1 or its associated regulatory pathways can prevent the generation and deterioration of several malignancies. However, the role of DCLK1 in CCA progression and its molecular mechanisms remain unknown. Therefore, we aimed to investigate whether and how DCLK1 contributes to CCA progression. METHODS: The expression of DCLK1 in CCA patients was detected using Immunohistochemistry (IHC). We established DCLK1 knockout and DCLK1 overexpression cell lines for Colony Formation Assay and Transwell experiments to explore the tumor-promoting role of DCLK1. RT-PCR, Western blot and multiple fluorescent staining were used to assess the association between DCLK1 and epithelial-mesenchymal transition (EMT) markers. RNA sequencing and bioinformatics analysis were performed to identify the underlying mechanisms by which DCLK1 regulates CCA progression and the EMT program. RESULTS: DCLK1 was overexpressed in CCA tissues and was associated with poor prognosis. DCLK1 overexpression facilitated CCA cell invasion, migration, and proliferation, whereas DCLK1 knockdown reversed the malignant tendencies of CCA cells, which had been confirmed both in vivo and in vitro. Furthermore, we demonstrated that DCLK1 was substantially linked to the advancement of the EMT program, which included the overexpression of mesenchymal markers and the downregulation of epithelial markers. For the underlying mechanism, we proposed that the PI3K/AKT/mTOR pathway is the key process for the role of DCLK1 in tumor progression and the occurrence of the EMT program. When administered with LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, the tumor's ability to proliferate, migrate, and invade was greatly suppressed, and the EMT process was generally reversed. CONCLUSIONS: DCLK1 facilitates the malignant biological behavior of CCA cells through the PI3K/AKT/mTOR pathway. In individuals with cholangiocarcinoma who express DCLK1 at high levels, inhibitors of the PI3K/AKT/mTOR signaling pathway may be an effective therapeutic approach.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Animais , Feminino , Camundongos , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Prognóstico , Pessoa de Meia-Idade , Proliferação de Células , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica
11.
Environ Pollut ; 357: 124384, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901818

RESUMO

Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.


Assuntos
Asma , Benzo(a)pireno , Transição Epitelial-Mesenquimal , Fator 3-beta Nuclear de Hepatócito , Interleucina-6 , Receptores de Interleucina-6 , Fator de Transcrição STAT3 , Transdução de Sinais , Asma/induzido quimicamente , Asma/metabolismo , Benzo(a)pireno/toxicidade , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Humanos , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos
12.
Int Immunopharmacol ; 136: 112368, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823175

RESUMO

Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin ß1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin ß1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin ß1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and ß-catenin in the downstream Integrin ß1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinß1 /ILK/PI3K signaling pathway. This indicates that the Integrin ß1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.


Assuntos
Transição Epitelial-Mesenquimal , Integrina beta1 , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Silicose , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Integrina beta1/metabolismo , Integrina beta1/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Masculino , Dióxido de Silício/toxicidade , Silicose/metabolismo , Silicose/patologia , Silicose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Ratos Sprague-Dawley
13.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709307

RESUMO

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Ácido Láctico , Lipopolissacarídeos , Transportadores de Ácidos Monocarboxílicos , Fibrose Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Camundongos , Ácido Láctico/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
15.
Oncol Res ; 32(4): 679-690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560575

RESUMO

Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral , Prognóstico , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Invasividade Neoplásica/genética , Metástase Neoplásica
16.
Environ Int ; 186: 108656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621321

RESUMO

Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.


Assuntos
Cádmio , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Circular , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Ratos , Cádmio/toxicidade , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Masculino
17.
Heliyon ; 10(5): e27155, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449647

RESUMO

At present, surgical resection is the most effective method for the treatment of gastric cancer. However, death caused by inoperable metastasis is still very common, despite research in this area. The mechanisms underlying the occurrence, development, and metastasis of gastric cancer are not fully understood. Ezrin, a plasma membrane-microfilament junction participates in a variety of cellular activities and is closely related to tumorigenesis and development. Few studies have explored the relationship between the tumor immune microenvironment and ezrin expression in gastric cancer. In this study, we used proteomic techniques to analyze the differentially expressed proteins between the gastric cancer cell lines MKN-45 and HGC-27 and screened ezrin as the target protein. We collected patient information from The TCGA and GEO databases, and the results showed that ezrin was positively correlated with adverse clinical features. We further explored the relationship between ezrin expression levels, immune microenvironment, and genomic changes. We found that ezrin was involved in immune regulation and genomic instability in gastric cancer. When the expression of ezrin is high, immune cell infiltration also increases. We also predicted that ezrin is closely related to immunotherapy and chemosensitivity. Single-cell transcriptome data showed that the ezrin gene was mainly expressed in B cells and epithelial cells, and the expression of EZR in these epithelial cells was positively correlated with the epithelial-mesenchymal transformation pathway and Pi3k-AKT pathway score. Through functional verification of the stably transfected cell line constructed by lentivirus, the results of the liver metastasis model in nude mice suggested that high expression of ezrin leads to the formation of more metastatic foci. In summary, our results clarify the prognostic, immunological, and therapeutic value of ezrin in gastric cancer and provide a theoretical basis for more accurate treatment.

18.
Heliyon ; 10(2): e24664, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298716

RESUMO

Background: The incidence of cervical cancer ranks second among malignant tumors in women, exerting a significant impact on their quality of life and overall well-being. The hypoxic microenvironment plays a pivotal role in the initiation and progression of tumorigenesis. The present study aims to investigate the fundamental genes and pathways associated with the hypoxia-inducible factor (HIF-1A) in cervical cancer, aiming to identify potential downstream targets for diagnostic and therapeutic purposes. Methods: We obtained dataset GSE63514 from the Comprehensive Gene Expression Database (GEO). The dataset comprised of 24 patients in the normal group and 28 patients in the tumor group. Gene set difference analysis (GSVA) and gene set enrichment analysis (GSEA) were used to identify the genes related to HIF-1A expression and the specific signaling pathways involved.The association between HIF-1A and tumor immune infiltration was examined in the TCGA dataset. The WGCAN network was constructed to identify key genes within the blue module, and subsequent gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the pathways and functional annotations associated with HIF-1A. The protein interaction network of the HIF-1A gene was obtained from the STRING database and visualized using Cytoscape in the meantime.The function of HIF-1A and its related gene expression were verified in vivo. Results: HIF-1A was a risk factor in both univariate and multivariate Cox regression analysis of cervical cancer patients. A total of 344 genes significantly correlated with the expression of HIF-1A were identified through correlation analysis, and the genes exhibiting the strongest correlation were obtained. The major signaling pathways involved in HIF-1A encompass TNF-α/NF-κB, PI3K/AKT/MTOR, TGF-ß, JAK-STAT, and various other signaling cascades. Reinforced by qRT-PCR, we identified Integrin beta-1 (ITGB1), C-C motif chemokine ligand 2 (CCL2), striatin 3 (STRN3), and endothelin-1 (EDN1) as pivotal downstream genes influenced by HIF-1A. HIF-1A is associated with immune infiltration of natural killer (NK) cells, mast cells, CD4+T cells, M0 macrophages, neutrophils, follicular helper T cells, CD8+T cells, and regulatory T cells (Treg). HIF-1A is associated with sensitivity to chemotherapy drugs. The identification of the HIF-1A pathway and its function primarily focuses on cytoplasmic translation, aerobic respiration, cellular respiration, oxidative phosphorylation, thermogenesis, among others. The results of in vivo experiments have confirmed that HIF-1A plays a crucial role in promoting the migration and invasion of cervical cancer cells. Moreover, the overexpression of HIF-1A led to an upregulation in the expressions of ITGB1, CCL2, STRN3, and EDN1. Conclusions: The role of HIF-1A in cervical cancer was determined through a combination of bioinformatics analysis and experimental validation. The genes potentially implicated in the tumorigenesis mechanism of HIF-1A were identified. These findings has the potential to enhance our comprehension of the progression of cervical cancer and offer promising therapeutic targets for its clinical management.

19.
Cancer Cell Int ; 24(1): 77, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369484

RESUMO

BACKGROUND AND PURPOSE: Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation. Its role in cancer metastasis remains unclear. In this study, we aimed to investigate the potential involvement of ferroptosis in gastric cancer (GC) metastasis. METHODS: GC cells (AGS, MKN45, HGC27) were used to explore the role of ferroptosis in single and clustered cells with extracellular matrix (ECM) detachment in vitro. We overexpressed glutathione peroxidase 4 (GPX4) to inhibit ferroptosis and assessed the changes in cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Then tumor tissues from 54 GC patients with and without lymphatic metastasis were collected for immunohistochemical staining to investigate the expression of ferroptosis and EMT markers. Finally, Kaplan-Meier survival curves were used to investigate the relationship between overall survival and expression of GPX4 in 178 GC patients. RESULTS: Detached single cells had lower viability than adherent cells, but cell clustering improved their survival under matrix-detached conditions. Detached single cells exhibited an induction of iron-dependent reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, upregulation of ACSL4, TFRC and HO-1, increased iron levels, and changes in mitochondrial morphology. Opposite effects were observed in detached clustered cells, including the upregulation of the ferroptosis suppressors GPX4 and SLC7A11. Overexpression of GPX4 inhibited ferroptosis and promoted GC cell proliferation, migration, invasion, and EMT. Immunohistochemical analysis of tumor tissues from GC patients indicated that lymphatic metastasis was associated with higher potential for ferroptosis inhibition and EMT induction. Finally, Kaplan-Meier survival curves demonstrated a significant decrease in overall survival among GC patients with high GPX4 expression. CONCLUSIONS: Our study provides the first evidence that inhibition of ferroptosis is a crucial mechanism promoting GC metastasis. GPX4 may be a valuable prognostic factor for GC patients. These findings suggest that targeting ferroptosis inhibition may be a promising strategy for GC patients with metastatic potential. Trial registration The ethical approval code of this study in Institutional Review Board of Peking Union Medical College Hospital is No: K1447.

20.
Placenta ; 148: 20-30, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346375

RESUMO

BACKGROUND: Abnormal bile acid metabolism leading to changes in placental function during pregnancy. To determine whether endoplasmic reticulum protein 29 (ERp29) can mediate the pregnancy effects of cholestasis by altering the level of trophoblast cell apoptosis. METHODS: ERp29 in serum of 66 intrahepatic cholestasis of pregnancy (ICP) pregnant women and 74 healthy were detected by ELISA. Subcutaneous injection of ethinyl estradiol (E2) was used to induce ICP in pregnant rats. Taurocholic acid (TCA) was used to simulate the ICP environment, and TGF-ß1 was added to induce the epithelial mesenchymal transformation (EMT) process. The scratch, migration, and invasion test were used to detect the EMT process. ERp29 overexpression/knockdown vector were constructed and transfected to verify the role of ERp29 in the EMT process. Downstream gene was obtained through RNA-seq. RESULTS: Compared with the healthy pregnant women, the expression levels of ERp29 in serum of ICP pregnancy women were significantly increased (P < 0.001). ERp29 in the placenta tissue of the ICP pregnant rats increased significantly, and the level of apoptosis increased. The placental tissues of the ICP had high expression of E-cadherin and low expression of N-cadherin, snail1, vimentin. After HTR-8/SVneo cells were induced by TCA, EMT was inhibited, while the ERp29 increased. Cell and animal experiments showed that, knockdown of ERp29 reduced the inhibition of EMT, the ICP progress was alleviated. Overexpression of FOS salvaged the inhibitory effects of ERp29 on cell EMT. DISCUSSION: The high level of ERp29 in placental trophoblast cells reduced FOS mRNA levels, inhibited the EMT process and aggravated the occurrence and development of ICP.


Assuntos
Colestase Intra-Hepática , Complicações na Gravidez , Feminino , Gravidez , Humanos , Ratos , Animais , Placenta/metabolismo , Trofoblastos/metabolismo , Complicações na Gravidez/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Ácido Taurocólico/metabolismo , Ácido Taurocólico/farmacologia , Apoptose/fisiologia , Transição Epitelial-Mesenquimal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA