Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Odontology ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958828

RESUMO

Hyaluronic acid (HA), known for diverse properties, was investigated for its potential in dental pulp therapy. This study investigated the potential of HA in dental pulp therapy by examining the physical properties and effects of zinc oxide eugenol (ZOE) pulpotomy materials containing varying HA concentrations on rat molar teeth. In vitro tests assessed compressive strength and hardness of ZOE materials blended with HA (0.5%, 1%, 3%) and HA gels (0.54%, 0.8%). 120 samples, encompassing the control group, underwent compressive strength testing, while 60 samples were designated for hardness assessment. In vivo experiments on rat molars studied histological effects of HA-containing ZOE on dental pulp over 1 week and 1 month. Gels with HA concentrations of 0.5%, 1%, and 0.54% were used in pulpotomy on 22 rats. Each rat underwent the procedure on four teeth, with one tooth serving as a control, totaling 88 teeth subjected to the intervention. In the analyses, SPSS 22.0 was used and the significance level was set at P = 0.05. Findings showed that HA at 0.5% maintained compressive strength, but higher concentrations decreased mechanical properties significantly (P = 0.001). Histological assessments indicated better outcomes with lower HA concentrations in terms of odontoblast layer continuity (P = 0.005 at 1 month) and pulp vitality (P = 0.001 at 1 week and P = 0.018 at 1 month). The study suggests HA holds promise for pulpotomy and regenerative endodontic treatments, but further research is needed to understand long-term clinical implications.

2.
Front Pharmacol ; 15: 1354737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989141

RESUMO

Eugenol (EUG) is a bioactive monoterpenoid used as an analgesic, preservative, and flavoring agent. Our new data show EUG as a voltage-gated Na+ channel (VGSC) inhibitor, comparable but not identical to lidocaine (LID). EUG inhibits both total and only TTX-R voltage-activated Na+ currents (INa) recorded from VGSCs naturally expressed on dorsal root ganglion sensory neurons in rats. Inhibition is quick, fully reversible, and dose-dependent. Our biophysical and pharmacological analyses showed that EUG and LID inhibit VGSCs with different mechanisms. EUG inhibits VGSCs with a dose-response relationship characterized by a Hill coefficient of 2, while this parameter for the inhibition by LID is 1. Furthermore, in a different way from LID, EUG modified the voltage dependence of both the VGSC activation and inactivation processes and the recovery from fast inactivated states and the entry to slow inactivated states. In addition, we suggest that EUG, but not LID, interacts with VGSC pre-open-closed states, according to our data.

3.
J Conserv Dent Endod ; 27(6): 621-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989483

RESUMO

Aim: The study aimed to comparatively evaluate the effect of eugenol exposure time on the micro-shear bond strength (µ-SBS) of etch-and-rinse and a self-etch adhesive to dentin. Materials and Methods: One hundred and twelve teeth samples were prepared from bisectioning 56 freshly extracted human mandibular molars and were randomly divided into 14 subgroups of 8 samples each (n = 8). Three subgroups containing eugenol and a noneugenol-based restorative material were placed on the dentin surface and left for 24 h, 7 days, and 14 days, respectively, and were compared to a control. Two bonding systems were evaluated: one being etch-and-rinse and the other self-etch adhesive. The µ-SBS were calculated and expressed in MPa. Statistical Analysis: The data were analyzed using mixed model analysis of variance. The level of statistical significance was set at 5%. Results: There was a statistically significant reduction in the µ-SBS values when the self-etch adhesive was used, after the removal of eugenol-containing cement placed for 24 h. However, the reduction in the µ-SBS values after 7 days or 14 days was not significant. Conclusion: Exposure to eugenol containing temporary cement for 24 h significantly reduces the µ-SBS of self-etching adhesives to dentin. However, exposure for 1 week or more has minimal effects.

4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000177

RESUMO

Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.


Assuntos
Aliivibrio fischeri , Antibacterianos , Daphnia , Eugenol , Testes de Sensibilidade Microbiana , Eugenol/farmacologia , Antibacterianos/farmacologia , Animais , Daphnia/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Ecotoxicologia , Cebolas/efeitos dos fármacos , Microbiologia do Solo , Adjuvantes Farmacêuticos/farmacologia , Bactérias/efeitos dos fármacos
5.
Fish Shellfish Immunol ; 151: 109748, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964434

RESUMO

The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 µM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.

6.
J Biomater Sci Polym Ed ; : 1-16, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965881

RESUMO

In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) via metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) Staphylococcus aureus and Gram (-) Escherichia coli bacteria and a yeast Candida albicans were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38972898

RESUMO

Eugenol possesses anti-inflammatory and antioxidant properties, and may serve as a potential therapeutic agent for hepatic fibrosis. However, the development of solid eugenol formulations is challenging due to its volatility. To address this issue, this study employed porous silica to adsorb solidified eugenol. The solidified powder was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In addition, the differences in in vitro release and oral bioavailability between eugenol and solidified eugenol powder were investigated. The effectiveness of eugenol and eugenol powder in treating liver fibrosis was investigated using enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and histopathological observations. Our results indicate that porous silica can effectively solidify eugenol into powder at a lower dosage. Furthermore, we observed that porous silica accelerates eugenol release in vitro and in vivo. The pharmacodynamic results indicated that eugenol has a positive therapeutic effect against hepatic fibrosis and that porous silica does not affect its efficacy. In conclusion, porous silica was able to solidify eugenol, which may facilitate the preparation and storage of solid formulations.

8.
Front Vet Sci ; 11: 1401909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872795

RESUMO

Aims: The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods: Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results: The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion: These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.

9.
J Pharm Bioallied Sci ; 16(Suppl 2): S1821-S1823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882785

RESUMO

Introduction: This study focuses on the gas chromatography-mass spectrometry (GC-MS) analysis of Kabasura Kudineer, a Siddha formulation renowned for its properties against cold and exclusively utilized during the coronavirus disease 2019 (COVID-19) pandemic. Methods: The medication was obtained from a reputable Siddha vendor in Chennai, India, and subsequently extracted and subjected to GC-MS analysis. Results: The GC-MS profiling revealed the presence of several molecules, including benzoic acid, eugenol, alpha-ylangeneol, trans-2,4-dimethylthiane, S, S-dioxide, humulene, methyl 4,7,10,13-hexadecatetraenoate, 17-octadecynoic acid, 1-hexadecyn-3-ol, 3,7,11,15-tetramethyl, sulfurous acid, butyl heptadecyl ester, chloroacetic acid, tetradecyl ester, n-propyl cinnamate, oleyl alcohol, trifluoroacetate, 1-heptatriacotanol, and fenretinide. These compounds exhibit expansive medicinal roles. Conclusion: Kabasura Kudineer emerges as a highly effective remedy for cold-related ailments, particularly owing to the presence of bioactive compounds such as eugenol and humulene. These constituents play pivotal roles in antimicrobial and anti-inflammatory activities. Further investigations into the individual medicinal efficacy of each identified molecule are warranted to substantiate the therapeutic potential of Kabasura Kudineer, providing valuable insights for future applications.

10.
J Conserv Dent Endod ; 27(5): 535-539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38939540

RESUMO

Aim: The aim of the study is to check the antibacterial efficacy of various ayurvedic oils used as a solvent with zinc oxide for preparing endodontic sealers. Materials and Methods: Forty-five extracted premolars were taken and were cut coronally and apically such that 7 mm of tooth specimen was prepared. Teeth were sterilized by autoclaving inoculated with Enterococcus faecalis and incubated for 24 h. The specimens were divided into three groups of 15 each. Group 1 - ZnO powder + Eugenol, Group 2 - ZnO powder + Aremidadi Oil, and Group 3 - ZnO powder + Dashmool oil. Bacterial growth in each specimen was calculated before and after sealer application and noted as the initial and final colony count. The antimicrobial effect of each sealer was measured by calculating the percentage reduction in colony count (%). One-way analysis of variance and post hoc tests will be used for statistical analysis. Results: The Zn + Arimedadi oil group showed the maximum antibacterial effect among the sealers tested and the Zn + eugenol sealer showed the least antimicrobial effect In comparison, there was a statistically significant difference between all the groups. Conclusion: Ayurvedic oil-based root canal sealers showed better antibacterial efficacy than eugenol-based sealers. Arimedadi oil showed the highest antibacterial activity against E. faecalis and Eugenol showed the least when used as a solvent.

11.
Foods ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928773

RESUMO

Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.

12.
Int J Food Microbiol ; 420: 110769, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38823189

RESUMO

The study prepared and used eugenol nanoemulsion loaded with nobiletin as fungistat to study its antifungal activity and potential mechanism of Penicillium italicum (P. italicum). The results showed that the minimum inhibitory concentration (MIC) of eugenol nanoemulsion loaded with nobiletin (EGN) was lower than that of pure eugenol nanoemulsion (EG), which were 160 µg/mL and 320 µg/mL, respectively. At the same time, the mycelial growth inhibition rate of EGN nanoemulsion (54.68 %) was also higher than that of EG nanoemulsion (9.92 %). This indicates that EGN nanoemulsion is more effective than EG nanoemulsion. Compared with EG nanoemulsion, the treatment of EGN nanoemulsion caused more serious damage to the cell structure of P. italicum. At the same time, in vitro inoculation experiments found that EGN nanoemulsion has better control and delay the growth and reproduction of P. italicum in citrus fruits. And the results reflected that EGN nanoemulsion may be considered as potential resouces of natural antiseptic to inhibit blue mold disease of citrus fruits, because it has good antifungal activity.


Assuntos
Antifúngicos , Citrus , Emulsões , Eugenol , Flavonas , Testes de Sensibilidade Microbiana , Penicillium , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Eugenol/farmacologia , Antifúngicos/farmacologia , Emulsões/farmacologia , Flavonas/farmacologia , Nanopartículas/química
13.
Food Chem ; 455: 139851, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824732

RESUMO

The purpose of this study was to prepare Pickering emulsion with synergistic antibacterial effect using whey protein isolated-citral (WPI-Cit) nanoparticles with eugenol for grape preservation. In this emulsion, eugenol was encapsulated in oil phase. The particle size, ζ-potential, and antibacterial mechanism of the nanoparticles were characterized. The rheological properties, antibacterial effects and preservation effects of WPI-Cit Pickering emulsion were measured. The results showed that the optimal preparation condition was performed at WPI/Cit mass ratio of 1:1, WPI-Cit nanoparticles were found to damage the cell wall and membrane of bacteria and showed more effective inhibition against S. aureus. Pickering emulsion prepared with WPI-Cit nanoparticles exhibited a better antibacterial effect after eugenol was encapsulated in it, which extended the shelf life of grapes when the Pickering emulsion was applied as a coating. It demonstrated that the Pickering emulsion prepared in this study provides a new way to extend the shelf life.


Assuntos
Antibacterianos , Emulsões , Eugenol , Conservação de Alimentos , Nanopartículas , Staphylococcus aureus , Vitis , Proteínas do Soro do Leite , Vitis/química , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Emulsões/química , Emulsões/farmacologia , Eugenol/química , Eugenol/farmacologia , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos/métodos , Staphylococcus aureus/efeitos dos fármacos , Tamanho da Partícula
14.
J Parasit Dis ; 48(2): 370-380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840881

RESUMO

Cryptosporidiosis is an opportunistic, globally distributed parasitic disease. Whereas Cryptosporidium causes asymptomatic infection and diarrhea in healthy people, it may lead to severe illness in immunocompromised individuals. Limited, effective therapeutic alternatives are available against cryptosporidiosis in those categories of patients. So, we are in urgent need of better drugs for the treatment of cryptosporidiosis. Fifty male Swiss albino mice were used. Mice were grouped into five groups of ten mice each. Group I was left uninfected, and four groups were infected with 1000 oocysts of cryptosporidium. The first infected group was left untreated. The remaining three-infected groups received nitazoxanide (NTZ), eugenol, and eugenol + NTZ, respectively, on the 6th day post infection (dpi) for five days. Mice were sacrificed on the 30th dpi. The efficacy of treatment was evaluated using parasitological, biochemical, and histopathological parameters. Combination therapy of eugenol with NTZ caused a significant reduction of the number of oocysts secreted in stool and improved cryptosporidiosis-induced liver injury manifested by the restoration of normal levels of liver enzymes (ALT and AST). Treatment with eugenol-NTZ combination maintained a well-balanced antioxidant status, as evidenced by a reduced level of nitric oxide (NO) and increased antioxidant Superoxide dismutase (SOD) enzyme activity. Moreover, the combination of eugenol with NTZ resulted in the restoration of the normal morphology of intestinal villi, crypts, and muscularis mucosa. Based on the findings extracted from the present work, we can conclude that eugenol is a complementary therapeutic when used with NTZ in the treatment of cryptosporidiosis. The addition of eugenol to NTZ in the treatment of cryptosporidiosis synergized the effect of NTZ, causing a greater reduction of the number of shedded oocysts, improving liver enzyme levels, and restoring normal intestinal pathology. Therefore, we presume that eugenol's antioxidant capacity accounts for the protective effect seen in the current study. We suggest eugenol as a supplemental chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of cryptosporidiosis based on the findings of the current study.

15.
Saudi Pharm J ; 32(7): 102118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38841106

RESUMO

This study aimed to provide an understanding of the influence of eugenol on CYP1A2, 2C9, 2D6, and 3A4 in human liver microsomes (HLM). Specific substrate for CYP1A2, 2C9, 2D6, and 3A4 were incubated in HLM with or without eugenol. The formation of their respective metabolites was assessed with HPLC analytical methods. Eugenol at 1, 10 and 100 µM levels inhibited the activity of CYP1A2 and CYP2C9 by 23.38 %, 23.57 %, 39.80 % and 62.82 %, 63.27 %, 67.70 % respectively. While, CYP2D6 and CYP3A4 activity was decreased by 40.70 %, 45.88 %, 62.68 % and 37.41 %, 42.58 % and 67.86 % at 1, 10 and 100 µM eugenol level respectively. The IC50 value of eugenol for CYP2D6 and CYP3A4 was calculated as 11.09 ± 3.49 µM and 13.48 ± 3.86 µM respectively. Potential herb-drug interactions was noted when eugenol is administered simultaneously with medications metabolized by these enzymes, most notably CYP2C9, CYP2D6 and CYP3A4.

16.
Nat Prod Res ; : 1-13, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828834

RESUMO

Eugenol(1), a terpenoid found in Ocimum, has various biological activities. The present study aims at extraction, isolation of the plant secondary metabolite eugenol (1), it's derivatisation and structure identification as bioactive molecules. Synthesis and antiplasmodial activity (in-vitro and in-vivo), of a series of fourteen novel eugenol-based 1,2,3-triazole derivatives was done in the present study. Derivatives 5a-5n showed good antimalarial activity against the strain Plasmodium falciparum NF54. Derivative 5 m, IC50 at 2.85 µM was found to be several times better than its precursor 1 (106.82 µM) whereas the derivative 5n showed three fold better activity than compound 1, in vitro. The structure-activity relationship of the synthesised compounds indicated that the presence of triazole ring in eugenol analogues is responsible for their good activity. Compound 5m, was further evaluated for in-vivo antimalarial activity which showed about 79% parasitemia suppression. It is the first report on antimalarial activity of triazole eugenol derivatives.

17.
Chirality ; 36(5): e23668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747133

RESUMO

The absolute configuration of three chiral eugenol derivatives was assigned by a multi-step methodology based on enantioselective HPLC combined with spectroscopic and theoretical calculations. Milligram amounts of enantiopure forms used for stereochemical characterization were isolated by HPLC on the immobilized amylose-based chiral stationary phase Chiralpak IG using normal phase elution conditions. The absolute configuration was indirectly determined for one of the three compounds by 1H NMR via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (Mosher's acid). Comparison of the experimental and predicted electronic circular dichroism spectra confirmed the stereochemical assignment by Mosher's method and extended the absolute configuration assignment to two other chiral compounds.

18.
Poult Sci ; 103(7): 103825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772090

RESUMO

This study was designed to examine the impact of aspirin eugenol ester (AEE) on the growth performance, serum antioxidant capacity, jejunal barrier function, and cecal microbiota of broilers raised under stressful high density (HD) stocking conditions compared with normal density broilers (ND). A total of 432 one-day-old AA+ male broilers were randomly divided into 4 groups: normal density (ND, 14 broilers /m2), high density (HD, 22 broilers /m2), ND + AEE, and HD + AEE. The results of the study revealed a significant decrease in the growth performance of broiler chickens as a result of HD stress (P < 0.05). The total antioxidant capacity (T-AOC) in serum demonstrated a significant decrease (P < 0.05) at both 28 and 35 d. Conversely, the serum level of malondialdehyde (MDA) exhibited a significant increase (P < 0.05). Dietary supplementation of AEE resulted in a significant elevation (P < 0.05) of serum GSH-PX, SOD and T-AOC activity at both 28 and 35 d. Moreover, exposure to HD stress resulted in a considerable reduction in the height of intestinal villi and mRNA expression of tight junction proteins in the jejunum, along with, a significant elevation in the mRNA expression of inflammatory cytokines (P < 0.05). However, the administration of AEE reversed the adverse effects of HD-induced stress on villus height and suppressed the mRNA expression of the pro-inflammatory genes, COX-2 and mPGES-1. Additionally, the exposure to HD stress resulted in a substantial reduction in the α-diversity of cecal microbiota and disruption in the equilibrium of intestinal microbial composition, with a notable decrease in the relative abundance of Bacteroides and Faecalibacterium (P < 0.05). In contrast, the addition of AEE to the feed resulted in a notable increase in the relative abundance of Phascolarctobacterium and enhanced microbial diversity (P < 0.05). The inclusion of AEE in the diet has been demonstrated to enhance intestinal integrity and growth performance of broilers by effectively mitigating disruptions in gut microbiota induced by HD stress.


Assuntos
Ração Animal , Antioxidantes , Aspirina , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Eugenol , Microbioma Gastrointestinal , Animais , Galinhas/crescimento & desenvolvimento , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/metabolismo , Dieta/veterinária , Ceco/microbiologia , Ceco/efeitos dos fármacos , Aspirina/administração & dosagem , Aspirina/farmacologia , Aspirina/análogos & derivados , Ração Animal/análise , Suplementos Nutricionais/análise , Eugenol/análogos & derivados , Eugenol/administração & dosagem , Eugenol/farmacologia , Distribuição Aleatória , Criação de Animais Domésticos , Inflamação/veterinária , Inflamação/induzido quimicamente
19.
J Food Sci ; 89(7): 4032-4046, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778552

RESUMO

In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.


Assuntos
Antioxidantes , Quitosana , Colágeno , Eugenol , Peixes , Pele , Resistência à Tração , Eugenol/farmacologia , Eugenol/química , Quitosana/química , Quitosana/farmacologia , Animais , Colágeno/química , Colágeno/farmacologia , Pele/efeitos dos fármacos , Pele/química , Antioxidantes/farmacologia , Antioxidantes/química , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
20.
Eur J Pharm Biopharm ; 200: 114337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789062

RESUMO

Orodispersible films (ODFs) have emerged as an advanced and patient-friendly delivery system due to ease of administration, improved patient compliance, quick release and taste-masking of active pharmaceutical ingredients. This research reports the preparation of the ODF containing eugenol and borax (EB-ODF) by a solvent casting technique for treating mouth ulcers. The EB-ODF consisted of vinyl pyrrolidone/vinyl acetate copolymer (Kollidon® VA64, VA64) and hydroxypropyl methylcellulose (HPMC-K250) as the film formers where eugenol and borax were loaded. The thickness of the EB-ODF obtained was 0.119 ± 0.001 mm and the tensile strength was 13.1 ± 1.1 N/mm2 (p > 0.05). The prepared films disintegrated in the oral cavity within 30 s and over 90% of the eugenol was released from the film in the first 5 min. Furthermore, the combined application of eugenol and borax, loaded in EB-ODF, displayed notable synergetic antibacterial property against both gram-negative and gram-positive bacteria. In an in-vivo study on a rat model with chemical burn-induced oral ulcers, the EB-ODF treatment group had a 100% reduction in ulcer area (p > 0.05) after 10 days of treatment and demonstrated a 38.7% higher reduction in oral ulcer area compared to the Dingpeng Cream treatment group (p < 0.0001). The EB-ODF treatment group showed minimal oral irritation, scoring only 1 point and a 65% preference in the taste tests (p < 0.0001). In summary, EB-ODF had successfully overcome the poor palatability of commercially available formulation and provided notable potential for further ulcer treatment product development.


Assuntos
Boratos , Eugenol , Úlceras Orais , Eugenol/administração & dosagem , Eugenol/farmacologia , Animais , Ratos , Boratos/administração & dosagem , Úlceras Orais/tratamento farmacológico , Masculino , Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Ratos Wistar , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...