Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37239330

RESUMO

Robust capuchin monkeys, Sapajus genus, are among the most phenotypically diverse and widespread groups of primates in South America, with one of the most confusing and often shifting taxonomies. We used a ddRADseq approach to generate genome-wide SNP markers for 171 individuals from all putative extant species of Sapajus to access their evolutionary history. Using maximum likelihood, multispecies coalescent phylogenetic inference, and a Bayes Factor method to test for alternative hypotheses of species delimitation, we inferred the phylogenetic history of the Sapajus radiation, evaluating the number of discrete species supported. Our results support the recognition of three species from the Atlantic Forest south of the São Francisco River, with these species being the first splits in the robust capuchin radiation. Our results were congruent in recovering the Pantanal and Amazonian Sapajus as structured into three monophyletic clades, though new morphological assessments are necessary, as the Amazonian clades do not agree with previous morphology-based taxonomic distributions. Phylogenetic reconstructions for Sapajus occurring in the Cerrado, Caatinga, and northeastern Atlantic Forest were less congruent with morphology-based phylogenetic reconstructions, as the bearded capuchin was recovered as a paraphyletic clade, with samples from the Caatinga biome being either a monophyletic clade or nested with the blond capuchin monkey.


Assuntos
Cebus , Sapajus , Animais , Filogenia , Cebus/genética , Teorema de Bayes , Haplorrinos
2.
Ann Bot ; 131(2): 261-274, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36048726

RESUMO

BACKGROUND AND AIMS: The Atlantic Forest biodiversity hotspot is a complex mosaic of habitat types. However, the diversity of the rain forest at the core of this complex has received far more attention than that of its marginal habitats, such as cloud forest, semi-deciduous forest or restinga. Here, we investigate broad-scale angiosperm tree diversity patterns along elevation gradients in the south-east Atlantic Forest and test if the diversity of marginal habitats is shaped from the neighbouring rain forest, as commonly thought. METHODS: We calculated phylogenetic indices that capture basal [mean pairwise phylogenetic distance (MPD)] and terminal [mean nearest taxon distance (MNTD)] phylogenetic variation, phylogenetic endemism (PE) and taxonomic and phylogenetic beta diversity (BD and PBD) for 2074 angiosperm tree species distributed in 108 circular sites of 10 km diameter across four habitat types i.e. rain forest, cloud forest, semi-deciduous forest and coastal vegetation known as restinga. We then related these metrics to elevation and environmental variables. KEY RESULTS: Communities in wetter and colder forests show basal phylogenetic overdispersion and short phylogenetic distances towards the tips, respectively. In contrast, communities associated with water deficit and salinity show basal phylogenetic clustering and no phylogenetic structure toward the tips. Unexpectedly, rain forest shows low PE given its species richness, whereas cloud and semi-deciduous forests show unusually high PE. The BD and PBD between most habitat types are driven by the turnover of species and lineages, except for restinga. CONCLUSIONS: Our results contradict the idea that all marginal habitat types of the Atlantic Forest are sub-sets of the rain forest. We show that marginal habitat types have different evolutionary histories and may act as 'equilibrium zones for biodiversity' in the Atlantic Forest, generating new species or conserving others. Overall, our results add evolutionary insights that reinforce the urgency of encompassing all habitat types in the Atlantic Forest concept.


Assuntos
Ecossistema , Magnoliopsida , Florestas , Evolução Biológica , Biodiversidade , Filogenia
3.
Biol Rev Camb Philos Soc ; 97(4): 1287-1305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35174946

RESUMO

Critical thermal limits (CTLs) constrain the performance of organisms, shaping their abundance, current distributions, and future distributions. Consequently, CTLs may also determine the quality of ecosystem services as well as organismal and ecosystem vulnerability to climate change. As some of the most ubiquitous animals in terrestrial ecosystems, ants are important members of ecological communities. In recent years, an increasing body of research has explored ant physiological thermal limits. However, these CTL data tend to centre on a few species and biogeographical regions. To encourage an expansion of perspectives, we herein review the factors that determine ant CTLs and examine their effects on present and future species distributions and ecosystem processes. Special emphasis is placed on the implications of CTLs for safeguarding ant diversity and ant-mediated ecosystem services in the future. First, we compile, quantify, and categorise studies on ant CTLs based on study taxon, biogeographical region, methodology, and study question. Second, we use this comprehensive database to analyse the abiotic and biotic factors shaping ant CTLs. Our results highlight how CTLs may affect future distribution patterns and ecological performance in ants. Additionally, we identify the greatest remaining gaps in knowledge and create a research roadmap to promote rapid advances in this field of study.


Assuntos
Formigas , Animais , Formigas/fisiologia , Mudança Climática , Ecossistema
4.
New Phytol ; 233(1): 534-545, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537964

RESUMO

The genus Manihot, with around 120 known species, is native to a wide range of habitats and regions in the tropical and subtropical Americas. Its high species richness and recent diversification only c. 6 million years ago have significantly complicated previous phylogenetic analyses. Several basic elements of Manihot evolutionary history therefore remain unresolved. Here, we conduct a comprehensive phylogenomic analysis of Manihot, focusing on exhaustive sampling of South American taxa. We find that two recently described species from northeast Brazil's Atlantic Forest were the earliest to diverge, strongly suggesting a South American common ancestor of Manihot. Ancestral state reconstruction indicates early Manihot diversification in dry forests, with numerous independent episodes of new habitat colonization, including into savannas and rainforests within South America. We identify the closest wild relatives to Manihot esculenta, including the crop cassava, and we quantify extensive wild introgression into the cassava gene pool from at least five wild species, including Manihot glaziovii, a species used widely in breeding programs. Finally, we show that this wild-to-crop introgression substantially shapes the mutation load in cassava. Our findings provide a detailed case study for neotropical evolutionary history in a diverse and widespread group, and a robust phylogenomic framework for future Manihot and cassava research.


Assuntos
Manihot , Evolução Biológica , Pool Gênico , Manihot/genética , Filogenia , América do Sul
5.
Protoplasma ; 259(4): 999-1011, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34709474

RESUMO

Polyploidy is the main mechanism for chromosome number variation in Cynodon. Taxonomic boundaries are difficult to define and, although phylogenetic studies indicate that some species are closely related, the degree of genomic similarity remains unknown. Furthermore, the Cynodon species classification as auto or allopolyploids is still controversial. Thus, this study aimed to investigate the genomic constitution in diploid and polyploid species using different approaches of genomic in situ hybridization (GISH). To better understand the hybridization events, we also investigated the occurrence of unreduced gametes in C. dactylon diploid pollen grains. We suggest a genomic nomenclature of diploid species as DD, D1D1, and D2D2 for C. dactylon, C. incompletus, and C. nlemfuensis, and DDD2D2 and DD2D1D1 for the segmental allotetraploids of Cynodon dactylon and C. transvaalensis, respectively. Furthermore, an evolutionary proposal was built based on our results and previous data from other studies, showing possible crosses that may have occurred between Cynodon species.


Assuntos
Cynodon , Poliploidia , Genoma de Planta/genética , Genômica , Hibridização In Situ , Filogenia
6.
Transbound Emerg Dis ; 69(4): 1872-1879, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038622

RESUMO

Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Doenças dos Ovinos , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Bovinos , Gastroenterite/veterinária , Genótipo , Humanos , Mamíferos , Norovirus/genética , Filogenia , Ovinos
7.
Ecology ; 102(8): e03434, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114663

RESUMO

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.


Assuntos
Biodiversidade , Invertebrados , Animais , Organismos Aquáticos , Oceanos e Mares , Comportamento Predatório
8.
iScience ; 24(5): 102487, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036249

RESUMO

Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations.

9.
J Viral Hepat ; 28(2): 393-399, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33128240

RESUMO

Hepatitis B virus (HBV) infection is considered a major health problem in the world. HBV is classified into genotypes A to J disseminated worldwide. Genotypes A, D and F are the most frequent in the Western World, B and C are predominant in the East, and E, F, H and J are infrequent and restricted to specific regions. HBV-G is a rare genotype, but it has been detected in different continents. This study aimed to report the temporal evolution and global spread of HBV-G comparing whole-genome sequences of this genotype from different regions in the world. Bayesian coalescent analysis was performed to estimate the time to the most recent common ancestor (tMRCA) and the population dynamics in the last decades. The results demonstrated that tMRCA of all HBV-Gs dated back to 1855 (95% highest posterior density interval [HPD 95%]: 1778 - 1931). This genotype has a possible origin in North America and it was disseminated to other continents (South and Central America, Europe, Asia and Africa) more than one century later (around the 1970s). The viral population demonstrated constant spreading from 1855 to the 1980s, followed by an increase in the 1990s and reached a plateau after the 2000s. Wide spreading at the beginning of the 1990s was probably associated with the dissemination by highly sexual active groups and injecting drug users. In conclusion, the present study demonstrated that HBV-G was originated in the 19th century with main events of spread at the end of the 20th century.


Assuntos
Evolução Molecular , Vírus da Hepatite B , Teorema de Bayes , Genótipo , Vírus da Hepatite B/genética , Humanos , Filogenia
10.
iScience ; 23(12): 101834, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305189

RESUMO

Blind snakes (Scolecophidia) are minute cryptic snakes that diverged at the base of the evolutionary radiation of modern snakes. They have a scant fossil record, which dates back to the Upper Paleocene-Lower Eocene (∼56 Ma); this late appearance conflicts with molecular evidence, which suggests a much older origin for the group (during the Mesozoic: 160-125 Ma). Here we report a typhlopoid blind snake from the Late Cretaceous of Brazil, Boipeba tayasuensis gen. et sp. nov, which extends the scolecophidian fossil record into the Mesozoic and reduces the fossil gap predicted by molecular data. The new species is estimated to have been over 1 m long, much larger than typical modern scolecophidians (<30 cm). This finding sheds light on the early evolution of blind snakes, supports the hypothesis of a Gondwanan origin for the Typhlopoidea, and indicates that early scolecophidians had large body size, and only later underwent miniaturization.

11.
Zootaxa ; 4748(3): zootaxa.4748.3.11, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32230070

RESUMO

Phylogenetic relationships among major hummingbird clades are relatively well resolved, yet due to the lack of morphological synapomorphies and relative phenotypic homogeneity, the systematics of several hummingbird groups remain unresolved. Here, we present the results of a multilocus study of a clade of emerald hummingbirds composed of Cynanthus, Chlorostilbon, Riccordia and Phaeoptila (sensu Stiles et al. 2017). We include taxa not analyzed in previous studies (C. lawrencei, C. auriceps and C. forficatus, from Tres Marías Islands, Western Mexico, and Cozumel Island, respectively), and this allows us to develop a new hypothesis for the phylogenetic relationships within this group. We found that this clade originated in Mesoamerica about 12 million years ago, and comprises four geographically congruent clades: (a) the most basal clade, Phaeoptila sordida, of the Balsas River basin, Mexico; (b) Riccordia bicolor, R. maugaeus, R. ricordii and R. swainsonii of the West Indies; (c) Chlorostilbon assimilis, C. aureoventris, C. melanorhynchus, C. mellisugus, C. poortmani and C. pucherani, all of South America, except C. assimilis of Central America; and (d) a Mesoamerican clade with two Cynanthus subclades: a widespread Mexican clade that includes species formerly belonging to the genus Chlorostilbon: Cynanthus auriceps, C. canivetii, C. doubledayi and C. forficatus; and a clade restricted to the west coast of Mexico and the Tres Marías Islands and composed of C. latirostris and C. lawrencei. Our results help clarify the systematics of this group of emeralds, reconstruct its true evolutionary history, and advance understanding of phenotypic evolution in hummingbirds.


Assuntos
Aves , Animais , Filogenia , Análise de Sequência de DNA
12.
Subcell Biochem ; 94: 251-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189303

RESUMO

There are three broad groups of oxygen-transport proteins found in the haemolymph (blood) of invertebrates, namely the hemocyanins, the hemerythrins and the globins. Both hemerythrins and extracellular globins are iron-based proteins that are understudied when compared to the copper-containing hemocyanins. Recent evidence suggests that hemerythrins and (giant) extracellular globins (and their linker chains) are more widely distributed than previously thought and may have biological functions beyond oxygen transport and storage. Herein, we review contemporary literature of these often-neglected proteins with respect to their structural configurations on formation and ancestral states.


Assuntos
Evolução Molecular , Globinas/química , Hemeritrina/química , Hemocianinas/química , Invertebrados/química , Animais
13.
Microorganisms ; 8(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877949

RESUMO

Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent "1002 yeast genomes project" has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the "1002 yeast genomes project". We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the "1002 yeast genomes project". We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes.

14.
Mol Phylogenet Evol ; 131: 149-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468940

RESUMO

White-nosed coatis (Nasua narica) are widely distributed throughout North, Central, and South America, but the patterns of temporal and spatial diversification that have contributed to this distribution are unknown. In addition, the biogeographic history of procyonid species in the Americas remains contentious. Using sequences from three mitochondrial loci (Cytochrome b, NAHD5 and 16S rRNA; 2201 bp) and genotypes from 11 microsatellite loci, we analyzed genetic diversity to determine phylogeographic patterns, genetic structure, divergence times, and gene flow among Nasua narica populations throughout the majority of the species' range. We also estimated the ancestral geographic range of N. narica and other procyonid species. We found a high degree of genetic structure and divergence among populations that conform to five evolutionarily significant units. The most southerly distributed population (Panama) branched off much earlier (∼3.8 million years ago) than the northern populations (<1.2 million years ago). Estimated gene flow among populations was low and mostly northwards and westwards. The phylogeographic patterns within N. narica are associated with geographic barriers and habitat shifts likely caused by Pliocene-Pleistocene climate oscillations. Significantly, our findings suggest the dispersal of N. narica was south-to-north beginning in the Pliocene, not in the opposite direction during the Pleistocene as suggested by the fossil record, and that the most recent common ancestor for coati species was most likely distributed in South or Central America six million years ago. Our study implies the possibility that the diversification of Nasua species, and other extant procyonid lineages, may have occurred in South America.


Assuntos
Variação Genética , Filogeografia , Procyonidae/classificação , Procyonidae/genética , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Genótipo , Repetições de Microssatélites/genética , América do Norte , Filogenia , América do Sul , Fatores de Tempo
15.
BMC Evol Biol ; 18(1): 173, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453887

RESUMO

BACKGROUND: The Pantosteus plebeius-nebuliferus species-group is a group of freshwater fishes distributed in endo- and exorheic drainage basins in the Mexican Sierra Madre Occidental mountain range system and central North Mexico. The geological history of this region is considered an important factor in explaining the evolutionary history of low vagility animals like freshwaters fishes. The aim of this study was to examine the phylogenetic relationships and describe the evolutionary history of the species-group. We hypothesized that the genetic structure and distribution of the main clades of Pantosteus plebeius-nebuliferus are associated with the geological history of Northern Mexico. To this end, we obtained DNA sequences of mitochondrial and nuclear genes and performed phylogenetic and phylogeographic analyses. Divergence time estimation and ancestral area reconstruction were also carried out to propose a biogeographical hypothesis, and species boundaries within the species-group were also tested. RESULTS: We identified four clades within the Pantosteus plebeius-nebuliferus species-group in both markers. Divergence ranged from 5.9% to 9.2% for cytb and 0.1% to 0.9% for GHI. We observed significant genetic structure and no shared haplotypes between clades. We estimated that the clades diverged during the last 5.1 Myr, with a biogeographic scenario suggesting eight vicariant and four dispersal events through the historic range of the species-group. We found that the best species-delimitation model is when four species are assumed, which correspond to the main clades. We identified nine evolutionary significance units (ESUs), pertinent to the conservation of the group, each representing populations present in distinct drainage basins. CONCLUSIONS: The evolutionary history of the Pantosteus plebeius-nebuliferus species-group is characterized by vicariant post-dispersal processes, linked to geological changes in the Sierra Madre Occidental and central Northern Mexico since the Pliocene. This is congruent with biogeographic patterns described for other co-distributed fish species. We propose a new phylogenetic hypothesis for the species-group, clarifying the taxonomy of this evolutionarily complex group. Our results suggest that the species-group consists of at least four clades with independent evolutionary histories, two of which may represent new undescribed species. Our identification of ESUs provides a basis upon which conservation measures can be developed for the species-group.


Assuntos
Cipriniformes/classificação , Filogenia , Filogeografia , Animais , Cipriniformes/genética , Marcadores Genéticos , Variação Genética , Haplótipos/genética , México , Especificidade da Espécie , Fatores de Tempo
16.
Comp Cytogenet ; 12(2): 223-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997743

RESUMO

Cytogenetic characteristics and genome size are powerful tools for species characterization and identification of cryptic species, providing critical insights into phylogenetic and evolutionary relationships. Sitophilus Linnaeus, 1758 grain weevils can benefit from such tools as key pest species of stored products and also as sources of archeological information on human history and past urban environments. Moreover, the phylogenetic relationship among these weevil species remains controversial and is largely based on single DNA fragment analyses. Therefore, cytogenetic analyses and genome size determinations were performed for four Sitophilus grain weevil species, namely the granary weevil Sitophilus granarius (Linnaeus, 1758), the tamarind weevil S. linearis (Herbst, 1797), the rice weevil S. oryzae (Linnaeus, 1763), and the maize weevil S. zeamais Motschulsky, 1855. Both maize and rice weevils exhibited the same chromosome number (2n=22; 10 A + Xyp). In contrast, the granary and tamarind weevils exhibited higher chromosome number (2n=24; 11 A + Xyp and 11 A + neo-XY, respectively). The nuclear DNA content of these species was not proportionally related to either chromosome number or heterochromatin amount. Maize and rice weevils exhibited similar and larger genome sizes (0.730±0.003 pg and 0.786±0.003 pg, respectively), followed by the granary weevil (0.553±0.003 pg), and the tamarind weevil (0.440±0.001 pg). Parsimony phylogenetic analysis of the insect karyotypes indicate that S. zeamais and S. oryzae were phylogenetically closer than S. granarius and S. linearis, which were more closely related and share a more recent ancestral relationship.

17.
BMC Ecol ; 18(1): 18, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890975

RESUMO

BACKGROUND: Diversity patterns result from ecological to evolutionary processes operating at different spatial and temporal scales. Species trait variation determine the spatial scales at which organisms perceive the environment. Despite this knowledge, the coupling of all these factors to understand how diversity is structured is still deficient. Here, we review the role of ecological and evolutionary processes operating across different hierarchically spatial scales to shape diversity patterns of bats-the second largest mammal order and the only mammals with real flight capability. MAIN BODY: We observed that flight development and its provision of increased dispersal ability influenced the diversification, life history, geographic distribution, and local interspecific interactions of bats, differently across multiple spatial scales. Niche packing combined with different flight, foraging and echolocation strategies and differential use of air space allowed the coexistence among bats as well as for an increased diversity supported by the environment. Considering distinct bat species distributions across space due to their functional characteristics, we assert that understanding such characteristics in Chiroptera improves the knowledge on ecological processes at different scales. We also point two main knowledge gaps that limit progress on the knowledge on scale-dependence of ecological and evolutionary processes in bats: a geographical bias, showing that research on bats is mainly done in the New World; and the lack of studies addressing the mesoscale (i.e. landscape and metacommunity scales). CONCLUSIONS: We propose that it is essential to couple spatial scales and different zoogeographical regions along with their functional traits, to address bat diversity patterns and understand how they are distributed across the environment. Understanding how bats perceive space is a complex task: all bats can fly, but their perception of space varies with their biological traits.


Assuntos
Distribuição Animal , Biodiversidade , Evolução Biológica , Quirópteros/fisiologia , Animais , Geografia
18.
Front Genet ; 9: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740480

RESUMO

Members of the Cryptococcus complex, includes Cryptococcus neoformans (most common fungal infection of the brain) and Cryptococcus gattii (high-impact emerging pathogen worldwide). Currently, the fungal multilocus sequence typing database (Fungal MLST Database) constitutes a valuable data repository of the genes used for molecular typing of these pathogens. We analyzed the data available in the Fungal MLST Database for seven housekeeping genes, with the aim to evaluate its contribution in the description of intra-taxa diversity, population genetic structure, and evolutionary patterns. Although the Fungal MLST Database has a greater number of reports for C. neoformans (n = 487) than for C. gattii (n = 344), similar results were obtained for both species in terms of allelic diversity. Phylogenetic reconstructions revealed grouping by molecular type in both species and allowed us to propose differences in evolutionary patterns (gradualism in the case of C. neoformans and punctuated evolution in the case of C. gattii). In addition, C. neoformans showed a population genetic structure consisting of 37 clonal complexes (CCs; CC1 being predominant), high crosslinking [without sequence type (ST) grouping by molecular type], marked divergence events in phylogenetic analysis, and few introgression events (mainly between VNI and VNIV). By contrast, C. gattii showed 50 CCs (with greater homogeneity in ST number by CC) and clustering by molecular type with marked crosslinking events in phylogenetic networks being less evident. Understanding relationships at the molecular level for species of the Cryptococcus complex, based on the sequences of the housekeeping genes, provides information for describing the evolutionary history of these emerging pathogens.

19.
Am J Bot ; 104(7): 1073-1087, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28710126

RESUMO

PREMISE OF THE STUDY: The yellow-flowered Aechmea subgenus Ortgiesia (yfAsO) (Bromeliaceae) is a group of seven morphologically similar bromeliads found mostly in the southern Brazilian Atlantic rainforest. The recent origin of this group probably contributes to its taxonomic complexity. The aims of this study were to investigate the levels of genetic diversity and structure at the population and species levels, to gain insight into the processes behind the diversification of the group, and to contribute to the establishment of species boundaries. METHODS: We sequenced two noncoding regions of the chloroplast genome (rpl32-trnL and rps16-trnK) and the nuclear phyC gene in 204 and 153 individuals, respectively, representing the seven species of the group. Phylogeographical and population genetics approaches were used. KEY RESULTS: Three of the seven yfAsO showed some degree of genetic differentiation among species. Divergence time for the group was dated to around 4 million years ago. Areas of conservation value were identified, and a scenario of multiple refugia in the southern Brazilian Atlantic rainforest during the Pleistocene climatic oscillations is suggested. CONCLUSIONS: We hypothesized that incomplete lineage sorting and localized hybridization events are responsible for the low levels of genetic differentiation and the taxonomic complexity observed among and within the seven yfAsO species. Further studies on Aechmea comata and Aechmea kertesziae will be necessary to clarify the boundary between these two species. Most of the populations sampled showed high genetic diversity and/or unique haplotypes; they should be prioritized for conservation purposes.


Assuntos
Bromeliaceae/classificação , Variação Genética , Hibridização Genética , Filogenia , Evolução Biológica , Brasil , Bromeliaceae/genética , Genética Populacional , Haplótipos , Filogeografia , Análise de Sequência de DNA
20.
Rev. biol. trop ; Rev. biol. trop;65(2): 725-733, Apr.-Jun. 2017. tab, ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-897576

RESUMO

ResumenLas historias de vida son atributos altamente variables que maximizan la adecuación de los organismos. Se ha documentado la relación del peso y el tamaño corporal sobre estos atributos, los cuales además estan influidos por variaciones ambientales y la heterogeneidad del hábitat. El tamaño y forma corporal son considerados atributos de historia de vida, los cuales estan principalmente asociados a la precipitación que promueve la cantidad de recursos disponibles en el ambiente. En el género Aspidoscelis el tamaño y masa relativa de la nidada estan asociados principalmente a la latitud y altitud. En Aspidoscelis gularis la precipitación de invierno favorece dos temporadas reproductoras, lo que determina que el tamaño de nidada sea variable en cada puesta. Las muestras fueron tomadas de mayo-julio 2013 y mayo-septiembre 2015. Se obtuvieron un total de 65 individuos de los cuales se tomaron medidas de longitud del cuerpo y distancia interaxilar, así como muestras de tejido hepático para la extracción de ADN y obtener las relaciones filogenéticas con respecto a un análisis de Inferencia Bayesiana para posteriormente aplicar los Métodos Comparados Filogenéticos como señal filogenética, contrastes filogenéticamente independientes y la reconstrucción del carácter ancestral. Por lo tanto, nuestros resultados muestran que en el tamaño y forma del cuerpo existe poca señal filogenética, en tanto que los contrastes filogenéticamente independientes y la reconstrucción del carácter ancestral sugieren que los tamaños corporales pequeños están asociadas a localidades con mayor cantidad de precipitación, lo que puede estar relacionado con un establecimiento de la madurez sexual temprana lo cual es el reflejo de la talla máxima de los adultos. Además, de acuerdo a un ANOVA y un ANCOVA hubo diferencias estadísticamente significativas en el tamaño y forma corporal respectivamente, lo que promueve un sistema para la competencia sexual para machos y un sistema para la fecundidad en hembras. Estos resultados son importantes para determinar el efecto de la precipitación sobre algunas características de historia de vida, lo que indica que las lagartijas del complejo sureste del complejo A. gularis son capaces de enfrentar diferentes presiones de selección, impuestas por el ambiente.


AbstractLife history traits are highly variable attributes that maximize organisms's fitness. The relationship of weight and body size with environmental changes and habitat heterogeneity has been documented in previous reports; and size and body shapes are both considered life history attributes that are associated with rainfall, that boost available resources in the environment. While in Aspidoscelis genus, clutch size and relative mass are mainly associated with latitude and altitude, in Aspidoscelis gularis, winter rainfall favors two reproductive seasons, which may determine season variable clutch size. With the aim to study this, samplings were undertaken from May-July 2013, and May-September 2015. A total of 65 individuals lizards of the Southeast clade were obtained, and body length and interaxilar distance measurements were taken; furthermore, hepatic tissue samples were taken for DNA extraction, which allowed us to analyze phylogenetic relationships through a Bayesian Inference analysis, and subsequently, to apply Phylogenetic Comparative Methods (like phylogenetic signal, phylogenetically independent contrasts and reconstruction of ancestral character). Our results showed that there is a low phylogenetic signal regarding body size and shape, while the phylogenetically independent contrasts and reconstruction of ancestral characters suggest that small body sizes are associated to locations with highest rainfall. This can be associated to an establishment of an early sexual maturity, which reflects the maximum size of adults. Furthermore, according to an ANOVA and ANCOVA, there were statistically significant differences in body size and shape respectively, which promote a system for sexual competition for males and a system for fertility in females. These results were important to determine the effect of rainfall on some life history traits, pointing out that lizards of the Southeast clade, belonging to the A. gularis complex were able to face different selection pressures, determined by the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA