Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.913
Filtrar
1.
Inflammation ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980500

RESUMO

Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-ß1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.

2.
Exp Anim ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987201

RESUMO

Experimental autoimmune encephalomyelitis (EAE) serves as a model for studying multiple sclerosis, with immunization strategies utilizing MOG35-55 peptide, emulsified in adjuvant enriched with mycobacterium tuberculosis (Mtb). This study examined the effects of Bacillus Calmette-Guérin (BCG) as an adjuvant, alongside the impact of MOG35-55 peptide doses and their residual counter ions on EAE development. We found that BCG can be effectively used to induce EAE with similar incidence and severity as heat-killed H37Ra, contingent upon the appropriate MOG35-55 peptide dose. Different immunization doses of MOG35-55 peptide significantly affect EAE development, with higher doses leading to a paradoxical reduction in disease activity, probably due to peripheral tolerance mechanisms. Furthermore, doses of MOG35-55 peptides with acetate showed a more pronounced effect on disease development compared to those containing trifluoroacetic acid (TFA), suggesting the potential influence of residual counter ions on EAE activity. We highlighted the feasibility of applying BCG to the establishment of EAE for the first time. Our findings emphasized the importance of MOG peptide dosage and composition in modulating EAE development, offering insights into the mechanisms of autoimmunity and tolerance. This could have implications for autoimmune disease research and the design of therapeutic strategies.

3.
Toxicol Appl Pharmacol ; 488: 116980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823456

RESUMO

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.


Assuntos
Células Dendríticas , Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Quercetina , Fator de Transcrição STAT4 , Células Th17 , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Quercetina/farmacologia , Fator de Transcrição STAT4/metabolismo , Feminino , Camundongos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Anti-Inflamatórios/farmacologia
4.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880650

RESUMO

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Assuntos
Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Interleucina-6 , Microglia , Esclerose Múltipla , Animais , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos , Interleucina-6/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Microglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptores CCR6/metabolismo , Receptores CCR6/genética , Feminino
5.
Neuroscience ; 552: 65-75, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885894

RESUMO

Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.

6.
Microbiome ; 12(1): 114, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915127

RESUMO

BACKGROUND: Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS: We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS: Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.


Assuntos
Ácido Elágico , Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Propionatos , Ácido Elágico/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/microbiologia , Propionatos/metabolismo , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino , Autoimunidade/efeitos dos fármacos , Disbiose/microbiologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Humanos , Administração Oral
7.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928437

RESUMO

Multiple sclerosis (MS) onset at an advanced age is associated with a higher risk of developing progressive forms and a greater accumulation of disability for which there are currently no effective disease-modifying treatments. Immunosenescence is associated with the production of the senescence-associated secretory phenotype (SASP), with IL-6 being one of the most prominent cytokines. IL-6 is a determinant for the development of autoimmunity and neuroinflammation and is involved in the pathogenesis of MS. Herein, we aimed to preclinically test the therapeutic inhibition of IL-6 signaling in experimental autoimmune encephalomyelitis (EAE) as a potential age-specific treatment for elderly MS patients. Young and aged mice were immunized with myelin oligodendrocyte protein (MOG)35-55 and examined daily for neurological signs. Mice were randomized and treated with anti-IL-6 antibody. Inflammatory infiltration was evaluated in the spinal cord and the peripheral immune response was studied. The blockade of IL-6 signaling did not improve the clinical course of EAE in an aging context. However, IL-6 inhibition was associated with an increase in the peripheral immunosuppressive response as follows: a higher frequency of CD4 T cells producing IL-10, and increased frequency of inhibitory immune check points PD-1 and Tim-3 on CD4+ T cells and Lag-3 and Tim-3 on CD8+ T cells. Our results open the window to further studies aimed to adjust the anti-IL-6 treatment conditions to tailor an effective age-specific therapy for elderly MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-6 , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Animais , Camundongos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Envelhecimento/imunologia , Interleucina-10/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/efeitos dos fármacos
8.
Redox Biol ; 75: 103240, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889621

RESUMO

T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.

9.
J Autoimmun ; 147: 103262, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833897

RESUMO

Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.

10.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844736

RESUMO

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Assuntos
Líquido Amniótico , Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Vesículas Extracelulares , Esclerose Múltipla , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Feminino , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL
11.
Neurobiol Dis ; 198: 106552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844244

RESUMO

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease leading to demyelination and axonal loss. Current treatments are immunomodulatory or immunosuppressive drugs acting on the inflammatory component. However, these treatments do not adequately address the crucial aspect of neuroprotection. Recently, an association between an altered balance of adipokines and MS has been proposed as both a risk factor for developing MS and a chronic disease aggravating factor. Specifically, a decrease of apelin plasma levels in MS patients compared to controls correlates with the number of relapses and disease severity. Here we report a dramatic downregulation of apelin levels in the CNS of EAE mice which is also detected in MS patients brain samples compared to controls. Exploiting innovative design and synthesis techniques, we engineered a novel fluorinated apelin-13 peptide characterized by enhanced plasmatic stability compared to its native counterpart. With this peptide, we assessed the potential therapeutic benefits of apelin preventive supplementation in the EAE mouse model. We show that the fluorinated Apelin-13 peptide ameliorates EAE clinical score and preserves myelin content in the EAE MOG model recapitulating the progressive form of disease. These results combined with ex-vivo experiments in brain organotypic slices and in vitro studies in neurons and primary microglia and macrophages suggest that apelin has neuroprotective effects and influences the microglia/macrophages function.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Fármacos Neuroprotetores , Animais , Fármacos Neuroprotetores/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Apelina/metabolismo , Apelina/farmacologia
12.
Methods Cell Biol ; 188: 35-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880527

RESUMO

Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Encefalomielite Autoimune Experimental/patologia , Animais , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Camundongos , Humanos , Ratos , Feminino
13.
Biomedicines ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927422

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a powerful model to study multiple sclerosis (MS). One of the approaches for EAE is to actively immunize with myelin-derived peptides with immune adjuvants. One of the commonly used immune adjuvants is pertussis toxin (PTx), without which EAE disease is mild with relatively longer onset. However, pertussis toxin can also inhibit G protein-coupled receptor (GPCR) signaling so it can confound investigations into the role of GPCRs in EAE or therapies designed to target GPCRs. Since EAE via active immunization without PTx results in a relatively mild disease state, we wanted to confirm that appropriate signaling molecules for the disease were being induced in one target tissue (i.e., brain). RNA-Seq analysis of whole brain tissue demonstrated that the MS signaling pathway was strongly activated in symptomatic mice. In addition, there was activation of Th1 (IFN signaling), Th2 (IL-4 signaling), and Th17 (IL-17 signaling). In comparing canonical pathways from our mouse mild EAE brains with a human MS atlas, EAE shared the most pathways with active and inactive lesions. An advantage of this approach is that disease induction is slower to develop and results in modest clinical signs, which likely more closely mimic human disease onset.

14.
Neurosci Biobehav Rev ; 163: 105767, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885889

RESUMO

Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.

15.
Front Immunol ; 15: 1400641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933267

RESUMO

Background and objectives: B cell depleting anti-CD20 monoclonal antibodies (aCD20 mAbs) are highly effective in treatment of multiple sclerosis (MS) but fail to halt the formation of meningeal ectopic lymphoid tissue (mELT) in the murine model experimental autoimmune encephalomyelitis (EAE). While mELT can be examined in EAE, it is not accessible in vivo in MS patients. Our key objectives were to compare the immune cells in cerebrospinal fluid (CSF), which is accessible in patients, with those in mELT, and to study the effects of aCD20 mAbs on CSF and mELT in EAE. Methods: Applying single cell RNA sequencing, we compared gene expression profiles in immune cells from (1) CSF with mELT and (2) aCD20 mAbs treated with control treated mice in a spontaneous 2D2xTh EAE model. Results: The immune cell composition in CSF and mELT was very similar. Gene expression profiles and pathway enrichment analysis revealed no striking differences between the two compartments. aCD20 mAbs led not only to a virtually complete depletion of B cells in the CSF but also to a reduction of naïve CD4+ T cells and marked increase of macrophages. No remarkable differences in regulated genes or pathways were observed. Discussion: Our results suggest that immune cells in the CSF may serve as a surrogate for mELT in EAE. Future studies are required to confirm this in MS patients. The observed increase of macrophages in B cell depleted CSF is a novel finding and requires verification in CSF of aCD20 mAbs treated MS patients. Due to unresolved technical challenges, we were unable to study the effects of aCD20 mAbs on mELT. This should be addressed in future studies.


Assuntos
Linfócitos B , Encefalomielite Autoimune Experimental , Meninges , Análise de Célula Única , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , Camundongos , Meninges/imunologia , Meninges/patologia , Linfócitos B/imunologia , Feminino , Estruturas Linfoides Terciárias/imunologia , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Antígenos CD20/imunologia , Líquido Cefalorraquidiano/imunologia , Modelos Animais de Doenças , Esclerose Múltipla/imunologia , Esclerose Múltipla/líquido cefalorraquidiano
16.
J Vet Sci ; 25(3): e35, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38834505

RESUMO

IMPORTANCE: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.


Assuntos
Encefalomielite Autoimune Experimental , Pulmão , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/patologia , Camundongos , Pulmão/patologia , Feminino , Imuno-Histoquímica , Osteopontina/metabolismo , Galectina 3/metabolismo , Peroxidase/metabolismo , Receptores de Hialuronatos/metabolismo , Medula Espinal/patologia , Inflamação/patologia , Western Blotting
17.
Transpl Immunol ; 85: 102067, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38839021

RESUMO

INTRODUCTION: Multiple sclerosis (MS), as a destructive pathology of myelin in central nervous system (CNS), causes physical and mental complications. Experimental autoimmune encephalomyelitis (EAE) is laboratory model of MS widely used for CNS-associated inflammatory researches. Cell therapy using macrophage M2 (MPM2) is a cell type with anti-inflammatory characteristics for all inflammatory-based neuropathies. This experimental study investigated the probable therapeutic anti-inflammatory effects of intraperitoneal (IP) injection of MPM2 on alleviation of motor defect in EAE-affected animals. MATERIALS AND METHODS: 24 C57/BL6 female mice were divided into four groups of EAE, EAE + Dexa, EAE + PBS, and EAE + MP2. EAE was induced through deep cervical injection of spinal homogenate of guinea pigs. MPM2 cells were harvested from bone marrow and injected (106cells/ml) in three days of 10, 13 and 16 post-immunizations (p.i). Clinical score (CS), anti-inflammatory cytokines (IL-4, IL-10), pro-inflammatory gene expression (TNF-α, IL-1ß) and histopathological investigations (HE, Nissl and Luxol Fast Blue) were considered. Data were analyzed using SPSS software (v.19) and p < 0.05 was considered significant level. RESULTS: During EAE induction, the mean animal weight was decreased (p < 0.05); besides, following MPM2 injection, the weight gain was applied (p < 0.05) in EAE + MPM2 groups than control. Increased (p < 0.05) levels of CS was found during EAE induction in days 17-28 in EAE animals; besides, CS was decreased (p < 0.05) in EAE + MPM2 group than EAE animals. Also, in days 25-28 of experiment, the CS was decreased (p < 0.05) in EAE + MPM2 than EAE + Dexa. Histopathological assessments revealed low density of cell nuclei in corpus callosum, microscopically. LFB staining also showed considerable decrease in white matter density of corpus callosum in EAE group. Acceleration of white matter density was found in EAE + MPM2 group following cell therapy procedure. Genes expression of TNF-α, IL-1ß along with IL-4 and IL-10 were decreased (p < 0.05) in EAE + MPM2 group. CONCLUSION: IP injection of MPM2 to EAE-affected female mice can potentially reduce the CNS inflammation, neuronal death and myelin destruction. MPM2 cell therapy can improve animal motor defects.

18.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761250

RESUMO

Abnormal activation of microglia, the resident macrophages in the central nervous system, plays an important role in the pathogenesis of multiple sclerosis (MS). The immune responsive gene 1(IRG1)/itaconate axis is involved in regulating microglia-mediated neuroinflammation. 4-Octyl itaconate (4-OI), a derivative of itaconate, plays a crucial immunomodulatory role in macrophages. This study investigated the effects and mechanisms of action of 4-OI on experimental autoimmune encephalomyelitis (EAE) and inflammatory BV2 microglia. In an EAE mouse model, clinical evaluation was conducted during the disease course. Hematoxylin and eosin staining was performed to assess inflammatory infiltration and Luxol Fast Blue was used to visualize pathological damage. Quantitative real-time polymerase chain reaction, western blotting and immunofluorescence were used to evaluate inflammatory response and microglial function status in EAE mice. BV2 microglia were used to further investigate the effects and mechanisms of action of 4-OI in vitro. 4-OI significantly alleviated the clinical symptoms of EAE, the inflammatory infiltration, and demyelination; reduced the levels of inflammatory factors; and inhibited the classical activation of microglia in the spinal cord. 4-OI successfully suppressed the classical activation of BV2 microglia and decreased the levels of inflammatory factors by activating the Nrf2/HO-1 signaling pathway. Furthermore, 4-OI downregulated IRG1 expression in both EAE mice and inflammatory BV2 microglia. 4-OI attenuates the microglia-mediated neuroinflammation and has promising therapeutic effects in MS.

19.
Front Immunol ; 15: 1391949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765015

RESUMO

Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.


Assuntos
Fumarato de Dimetilo , Encefalomielite Autoimune Experimental , Linfonodos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Linfonodos/imunologia , Linfonodos/efeitos dos fármacos , Camundongos , Feminino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Mesentério , Citocinas/metabolismo , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Modelos Animais de Doenças
20.
Artigo em Inglês | MEDLINE | ID: mdl-38778596

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system and is a leading cause of disability in young adults. Most therapeutic strategies are based on immunosuppressant effects. However, none of the drugs showed complete remission and may result in serious adverse events such as infection. Mesenchymal stem cells (MSCs) have gained much attention and are considered a potential therapeutic strategy owing to their immunomodulatory effects and neuroprotective functions. Experimental autoimmune encephalomyelitis (EAE), a classical animal model for MS, is widely used to explore the efficacy and mechanism of MSC transplantation. This review summarises the therapeutic mechanism of MSCs in the treatment of EAE, including the effects on immune cells (T cells, B cells, dendritic cells, natural killer cells) and central nervous system-resident cells (astroglia, microglia, oligodendrocytes, neurons) as well as various strategies to improve the efficacy of MSCs in the treatment of EAE. Additionally, we discuss the clinical application of MSCs for MS patients as well as the challenges and prospects of MSC transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...