Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-999161

RESUMO

ObjectiveTo screen out the transcriptomes related to the intervention of Wuzi Yanzongwan on the spermatogenic function of semi-castrated male mice, and to explore its potential mechanism in the intervention of the progress of low spermatogenic function. MethodBalb/c mice were randomly divided into sham-operated group, model group, testosterone propionate group(0.2 mg·kg-1·d-1, intramuscular injection) and Wuzi Yanzongwan group(1.56 g·kg-1·d-1, intragastric administration) according to body weight, with 12 mice in each group. The right testicle and epididymis were extracted from the model group and the drug administration group to construct the semi-castrated model of low spermatogenic function, while the fur and the right scrotum of the sham-operated group were only cut and immediately sterilized and sutured. At the end of the intervention, hematoxylin-eosin(HE) staining was used to observe the histopathology of testis, enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum testosterone(T), luteinizing hormone(LH) and follicle stimulating hormone(FSH). The sperm count and motility of epididymis were measured by automatic sperm detector of small animal. Transcriptomic microarray technology was used to detect the mRNA expression level of testicular tissue in each group, the transcriptome of genes related to the regulation of Wuzi Yanzongwan was screened, and three mRNAs were selected for Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) to verify the transcriptome data. Through the annotation analysis of Gene Ontology(GO) and the signaling pathway analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG), the related functions of drugs regulating transcriptome were analyzed. ResultCompared with the sham-operated group, the testicular tissue of mice in the model group showed spermatogenic injury, contraction and vacuolization of the seminiferous tubules, reduction of spermatogenic cells at all levels, widening of the interstitial space, obstruction of spermatogonial cell development and other morphological abnormalities, and serum T significantly decreased, LH significantly increased(P<0.01), and FSH elevated but no statistically significant difference, the count and vitality of epididymal sperm significantly decreased(P<0.01). There were 882 differentially expressed mRNAs in the testicular tissues, of which 565 were up-regulated and 317 were down-regulated. Cluster analysis showed that these differentially expressed mRNA could effectively distinguish between the sham-operated group and the model group. Compared with the model group, the damage to testicular tissue in the Wuzi Yanzongwan group was reduced, the structure of the seminiferous tubules was intact, vacuolization was reduced, and the number of spermatogenic cells at all levels was significantly increased and arranged tightly. The serum T significantly increased, LH significantly decreased(P<0.01), and FSH decreased but the difference was not statistically significant. The count and vitality of sperm in the epididymis were significantly increased(P<0.01). Moreover, Wuzi Yanzongwan could regulate 159 mRNA levels in the testes of semi-castrated mice, of which 32 were up-regulated and 127 were down-regulated, and the data of the transcriptome assay was verified to be reliable by Real-time PCR. GO and KEGG analysis showed that the transcriptome functions regulated by Wuzi Yanzongwan were involved in the whole cell cycle process of sperm development such as sex hormone production of interstitial cells in testis, renewal, differentiation, metabolism, apoptosis and signal transduction of spermatogenic cells, and were closely related to the biological behaviors of signaling pathways such as spermatogenic stem cell function, endoplasmic reticulum protein processing and metabolic program. ConclusionWuzi Yanzongwan can effectively improve the low spermatogenic function of semi-castrated male mice, and its mechanism may be related to the regulation of testicular transcriptional regulatory network, the synthesis of sex hormones in testicular interstitial cells, the function of spermatogenic stem cells, the whole cell cycle process of spermatogenesis, as well as the expression of endoplasmic reticulum protein processing and metabolic program related genes transcription.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016479

RESUMO

Due to the difference between the system of weights and measures, and the dosage of clinical prescriptions of traditional Chinese medicine in various historical periods, the dosage and conversion standard of prescriptions in past dynasties are different. Therefore, when discounting the dosage of famous classical formulas, the principles of inheriting the essence, making the past serve the present, linking the past and the present, and forming a consensus should be followed, firstly, the dosage of the prescription was converted according to the weights and measures system of the past dynasties. If the converted dosage significantly exceeds the provisions of the 2020 edition of Chinese Pharmacopoeia, then on the premise of ensuring that the proportion of the original prescription drug dosage remains unchanged, the conversion shall be based on expert consensus and drug safety evaluation. For drugs measured in non-standard units, a conversion range is provided based on comprehensive literature analysis and physical measurements. For the conversion of service volume, the original text was used as the basis for the conversion with reference to the measurement standards of different eras. If the original dosage is not clear, the converted dosage will be determined based on the historical evolution of the formula, referring to relevant ancient books, and combining modern applications. Eventually, the converting standard for famous classical formulas was determined as follows:during the Han and Tang dynasties, one Liang(两) was equivalent to 13.8 g and one Sheng(升) was equivalent to 200 mL, in the Tang dynasty, one Fen(分) was equivalent to 3.45 g, during the Song, Jin and Yuan dynasties, one Qian(钱) was equivalent to 4.13 g and one Zhan(盏) was equivalent to 300 mL, during the Ming and Qing dynasties, one Qian(钱) was equivalent to 3.73 g, and one Bei(杯) and one Zhong(盅) were equivalent to 200 mL. For drugs recorded in non-standard units of measurement, it is necessary to conduct actual measurements to determine their conversion standards based on comprehensive analysis to determine their origin. If necessary, different records of the dosage of drugs with the same or similar efficacy and indications in medical books of similar ages can be used to assist in determining the conversion standards. The analysis of the principle of dosage conversion for Chinese medicine is helpful for the clinical application and development of famous classical formulas.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1012707

RESUMO

Tuoli Xiaodusan is the 65th formula in the Catalogue of Ancient Famous Classical Formulas(First Batch). In this study, the bibliometric method was used to summarize and verify the ancient books about Tuoli Xiaodusan in terms of its historical origin, composition and dosage of the formula, indications, decoction and administration method, and processing, etc. According to the research, there is no definite date of the formation of Tuoli Xiaodusan, the earliest can be traced back to Lizhai Waike Fahui in Ming dynasty, which has been widely circulated, with many versions of prescription composition, and the modern influential version is from Waike Zhengzong in Ming dynasty, which is made up of 12 Chinese herbs including Ginseng Radix et Rhizoma(3.73 g), Chuanxiong Rhizoma(3.73 g), Paeoniae Radix Alba(3.73 g), Astragali Radix(3.73 g), Angelicae Sinensis Radix(3.73 g), Atractylodis Macrocephalae Rhizoma(3.73 g), Poria(3.73 g), Lonicerae Japonicae Flos(3.73 g), Angelicae Dahuricae Radix(1.87 g), Glycyrrhizae Radix et Rhizoma(1.87 g), Gleditsiae Spina(1.87 g), Platycodonis Radix(1.87 g). The herb origins almost follow the 2020 edition of Chinese Pharmacopoeia, except that Angelica dahurica var. formosana is only recommended as the origin of Angelicae Dahuricae Radix, and Glycryyhiza uralensis is only recommended as the origin of Glycyrrhizae Radix et Rhizoma. All the herbs are recommended to be used in the raw products. As for the preparation method, it is recommended to decoct with water, add 400 mL of water, boil until 160 mL, and take 2-3 times a day. The formula has the functions of nourishing Qi and nourishing blood, detoxifying and draining pus, and was mainly used to treat ulcerative diseases with the syndrome of syndrome of healthy Qi deficiency and pathogenic factors excess in ancient times, and in modern times, it is used for a wide range of treatment, involving the skin and soft tissues, bones, digestion and many other systemic diseases, and is also mainly used for syndrome of healthy Qi deficiency and pathogenic factors excess. In this study, the ancient and modern applications of Tuoli Xiaodusan were summarized, and its key information was identified, providing a basis for its wider clinical application, in-depth research and formulation development.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011460

RESUMO

Yigongsan is derived from Xiaoer Yaozheng Zhijue written by QIAN Yi in the Northern Song dynasty, which is the No. 3 formula in the Catalogue of Ancient Famous Classical Formulas(The Second Batch of Pediatrics) released by the National Administration of Traditional Chinese Medicine(TCM) in September 2022, and it can be developed as a class 3.1 new TCM drug. By referring to ancient medical books and modern literature, this study conducted herbal textual research on Yigongsan from five aspects, including historical evolution, origin and processing, dosage conversion, usage and preparation methods, and functional application, then formed the key information table of this formula, in order to provide reference for the development of reference samples and preparations of Yigongsan. Based on the results of the study, it is recommended that Panax ginseng should be removed the basal part of stem(rhizoma), Poria cocos should be removed the peel, Citrus reticulata should be cut into shreds and Glycyrrhiza uralensis should be used. According to 4.13 g/Qian(钱), 1 g/slice for ginger, 3 g for each jujube and 300 mL/Zhan(盏), the doses of Ginseng Radix, Poria, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma, Citri Reticulatae Pericarpium, Zingiberis Rhizoma Recens, Jujubae Fructus were 1.652, 1.652, 1.652, 1.652, 1.652, 5, 6 g, and the total amount was 19.26 g. The decocting method was to crush the medicinal materials into fine powder with 50-80 mesh, add 300 mL of water and decoct to 210 mL for each dose, then remove the dregs and take it warmly. This formula was recorded in ancient books as the main treatment for the cold-deficiency of spleen and stomach, and Qi stagnation in children with vomiting and diarrhea and lack of appetite. It has been flexibly applied by later generations of physicians, and is often used to treat anorexia, inflammation of the digestive tract, diarrhea and other diseases in children.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011439

RESUMO

By reviewing the ancient and modern literature, the name, origin, scientific name evolution, place of origin, quality, harvesting, processing, efficacy and toxicity of Asteris Radix et Rhizoma(ARR) were systematically sorted out, so as to provide reference for the development and utilization of the relevant famous classical formulas. According to textual research, ARR was first contained in Shennong Bencaojing, all generations are Ziwan for its proper name, and there are still aliases such as Ziyuan, Ziqian and Xiaobianer. Its mainstream origin in successive generations was Aster tataricus, and there are also Ligularia fischeri and others in local area of use. The medicinal parts of ARR are root and rhizome, but in modern times, the rhizome is mostly used for propagation and cultivation, so some of ARR medicinal materials only have the root without the rhizome. The earliest recorded ancient origin of ARR was now Fangxian(Hubei), Zhengding and Handan(Heibei), then the range of production areas gradually expanded, the mainstream production areas from the Song dynasty to the Ming and Qing dynasties included Hebei, Jiangsu, Anhui, Henan and other places, since modern times, two major producing areas have been formed in Anguo, Hebei province and Bozhou, Anhui province. From the quality evaluation, it is clear that from ancient times, flexible roots and purple color are the best. The ancient harvesting was mainly in lunar February or March, and then dried in the shade, and the modern harvesting is mostly in spring and autumn, and the roots are braided into pigtails and then dried in the sun or dried in the sun after 1-2 d. The ancient and modern processing method of ARR are basically the same, mainly honey processing, there are still methods of frying, steaming, vinegar sizzling, etc. Based on the results, it is recommended that the dried roots and rhizomes of A. tataricus should be used in clinical and the development of related famous classical formulas, and those whose original formulas specify the processing requirements can be processed according to the relevant requirements, while whose processing requirements are not specified should be used in the form of raw products.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011438

RESUMO

Through consulting the ancient herbal books and modern literature, this paper has carried out the textual research on the name, origin, place of origin, harvesting and processing, and other contents of Bruceae Fructus, combed its ancient and modern medicinal history, so as to provide reference for the development of famous classical formulas containing Bruceae Fructus. Through the herbal textual research, It can be verified that, since the Qing dynasty, Bruceae Fructus has been recorded in the materia medica, most of the materia medica in previous dynasties took Bruceae Fructus as its proper name, and Laoyadan, Kushenzi and Yadanzi as the aliases. The main origin of Bruceae Fructus is Brucea javanica, its medicinal part is the fruit, which is harvested from August to October every year, the fruit can be harvested when it is ripe. Bruceae Fructus was first distributed in Fujian, Guangdong and Guangxi, and gradually expanded to the south of China with the change of time. The traditional processing method of Bruceae Fructus is mainly to remove the shell and kernel, and remove the oil by frosting. The 2020 edition of Chinese Pharmacopoeia stipulates that its processing method is to remove the shell and impurities. Based on the research results, it is suggested that the dried mature fruit of B. javanica should be selected for the development of famous classical formulas containing this herb, and the raw products can be used if the original formula does not specify the processing requirements.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011437

RESUMO

In order to provide a reference basis for the development of relevant compound preparations, this article takes a comprehensive analysis of the usage and dosage of famous classical formulas in Han dynasty from various perspectives, and gives corresponding countermeasures on this basis. Through the comprehensive analysis of the classification and statistics of Zhongjing's medication characteristics, decoction methods, administration and dosage, and combining conversion methods of weights and measures by ancient medical practitioners, along with the dosage and administration of the listed Han dynasty famous classical formulas, it was found that the "Jiangxi method" served as a general guideline for administration according to Zhongjing's original text. This method allowed for flexible dosing based on the conversion of the ancient measurements to modern equivalents[13.8 g per Liang(两)], ensuring the safe and effective medication of these formulas. After combing, it is found that although the dosage of single medicine is large in famous classical formulas from Han dynasty, the administration is flexible. The crude drug amount per administration serves as the foundational dose, with the frequency of administration adjusted flexibly according to the condition. This dosing approach becomes the key for the rational development of compound formulations of famous classical formulas. Based on the conclusions of the study, it is recommended that when developing compound formulations of famous classical formulas in Han dynasty, the original administration method and dosage should be respected. The original crude drug amount per administration should be considered as the daily foundational dose, with the frequency of administration described within a range(1 to N times per day, where N is the maximum number of administrations as per the original text). The specific frequency of administration can be adjusted flexibly by clinical practitioners based on the individual condition. This approach should also be adopted in toxicological studies, where the dosage per administration serves as the basis for toxicity research, and the toxicity profile at the maximum administration frequency should be observed, providing guidance on the clinical safety range. Corresponding drug labels should provide information within a range to indicate toxicological risk intervals.

8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006569

RESUMO

By consulting the ancient and modern literature, the textual research of Pharbitidis Semen has been conducted to clarify the name, origin, distribution of production areas, quality specification, harvesting, processing and so on, so as to provide reference for the development and utilization of the relevant famous classical formulas. Through textual research, it can be seen that Pharbitidis Semen was first published in Mingyi Bielu(《名医别录》), and all dynasties have taken Qianniuzi as the correct name. Based on the original research, the main source of Pharbitidis Semen used in previous dynasties is the dried mature seeds of Pharbitis nil, which is consistent in ancient and modern times. The white Pharbitidis Semen appearing in Compendium of Materia Medica(《本草纲目》) from Ming dynasty is similar to the present P. purpurea. It is produced all over the country, and the quality is better if the particles are full and free of impurities. In ancient times, the harvesting time was mostly in the September. Now it is autumn. The fruits are ripe and harvested, dried to remove impurities for standby. In ancient times, the processing methods of Pharbitidis Semen were mainly wine steaming, steaming and frying until half cooked and grinding the head and end. In modern times, they have been simplified to stir-frying method. The nature, taste, meridian tropism and their effects also change supplements with the deepening of practice. Before the Ming dynasty, they were all bitter, cold and toxic. In the Ming dynasty, there appeared the characteristics of pungent, hot and small poisonous. The efficacy has evolved from controlling low Qi, curing foot edema, removing wind toxin, and facilitating urination to facilitating water and defecation, eliminating phlegm and drinking, and eliminating accumulated insects. The main clinical contraindications are those with weak spleen and kidney, those with weak spleen and stomach, pregnant women, and should not be used with croton and croton cream. Based on the textual research, it is suggested that when developing the classic famous formula with Pharbitidis Semen as the main raw material in the future, it is clear that the source should be the dried mature seeds of Pharbitis nil(black product is its black-brown seeds, white product is its beige seeds). The processing requirements indicated in the original formula are all processed according to the requirements, and the raw product is recommended to be used as medicine if not specified.

9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006266

RESUMO

ObjectiveTo sort out the historical evolution, prescription evolution and modern clinical application of Huagaisan. MethodHuagaisan and its synonym Huagaitang are used as keywords to search the databases of Traditional Chinese Medicine Think Tank, Chinese Medical Dictionary, Airusheng Chinese Medical Database and China National Knowledge Infrastructure(CNKI). According to the inclusion and exclusion criteria, we obtained the information of ancient books and modern clinical research literature related to Huagaisan, and systematically reviewed and analyzed the historical origin, prescription composition, preparation method, dosage, efficacy, medicinal material origin, processing method and modern clinical application of Huagaisan. ResultA total of 198 pieces of ancient book information were included, involving 93 ancient Chinese medicine books. Huagaisan was composed of fried Perillae Fructus, red Poria, fried Mori Cortex, Citri Eoxcarpium Rubrum, stir-fried Armeniacae Semen Amarum, Ephedrae Herba and fried Glycyrrhizae Radix et Rhizoma, which had the efficacy of promoting the lungs and relieving epidemiological symptoms, expelling phlegm and relieving cough, and treating cough with wind-cold bundled epidemiological symptoms and stagnation of phlegm and Qi. The preparation method was suggested as boiling powder, crushing the seven herbs into coarse particles, the dosage of each drug was fried Perillae Fructus of 1.27 g, red Poria of 1.27 g, fried Mori Cortex of 1.27 g, Citri Eoxcarpium Rubrum of 1.27 g, stir-fried Armeniacae Semen Amarum of 1.27 g, Ephedrae Herba of 1.27 g and fried Glycyrrhizae Radix et Rhizoma of 0.64 g, taking 8.26 g when decocting, adding 300 mL of water, decocting to 210 mL, removing the dregs, and taking it warmly after meals. Twenty-one clinical research papers were included to analyze the modern clinical application of Huagaisan, which was mainly used in the treatment of respiratory diseases such as pneumonia, asthma, bronchitis and so on. ConclusionThis paper has verified and summarized the key information of the famous classical formula Huagaisan, which can provide a detailed reference basis for the development and clinical application of its compound preparation.

10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006265

RESUMO

ObjectiveTo establish an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry(UHPLC-QqQ-MS) for determination of the active ingredients in Erdongtang, and to predict the targets and pathways of anti-insulin resistance action of this formula. MethodThe analysis was performed on an ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-3 min, 90%-87%A; 3-6 min, 87%-86%A; 6-9 min, 86%-83%A; 9-11 min, 83%-75%A; 11-18 min, 75%-70%A; 18-19 min, 70%-52%A; 19-22 min, 52%A; 22-25 min, 52%-5%A; 25-27 min, 5%-90%A; 27-30 min, 90%A). The contents of active ingredients in Erdongtang was detected by electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode under positive and negative ion modes. On this basis, network pharmacology was applied to predict the targets and pathways of Erdongtang exerting anti-insulin resistance effect. ResultThe 20 active ingredients in Erdongtang showed good linear relationships within a certain mass concentration range, and the precision, stability, repeatability and recovery rate were good. The results of determination showed that the ingredients with high content in 15 batches of samples were baicalein(1 259.39-1 635.78 mg·L-1), baicalin(1 078.37-1 411.52 mg·L-1), the ingredients with medium content were mangiferin(148.59-217.04 mg·L-1), timosaponin BⅡ(245.10-604.89 mg·L-1), quercetin-3-O-glucuronide(89.30-423.26 mg·L-1), rutin(46.91-1 553.61 mg·L-1), glycyrrhizic acid(55.97-391.47 mg·L-1), neomangiferin(37.45-127.03 mg·L-1), nuciferine(0.89-63.48 mg·L-1), hyperoside(6.96-136.78 mg·L-1), liquiritin(30.89-122.78 mg·L-1), liquiritigenin(26.64-110.67 mg·L-1), protodioscin(58.57-284.26 mg·L-1), the ingredients with low content were wogonin(7.16-20.74 mg·L-1), pseudoprotodioscin(5.49-22.96 mg·L-1), ginsenoside Rb1(7.31-23.87 mg·L-1), ginsenoside Rg1(10.78-28.33 mg·L-1), ginsenoside Re(7.78-24.76 mg·L-1), ophiopogonin D(2.08-4.29 mg·L-1), methylophiopogonanone A(0.74-1.67 mg·L-1). The results of network pharmacology indicated that the mechanism of anti-insulin resistance exerted by Erdongtang might be related to the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway. ConclusionThe established UHPLC-QqQ-MS has the advantages of simple sample processing, strong exclusivity and high sensitivity, and can simultaneously determine the contents of the main ingredients from seven herbs in Erdongtang, which can lay the foundation for the development of Erdongtang compound preparations. The results of the network pharmacology can provide a reference for the mechanism study of Erdongtang in the treatment of type 2 diabetes mellitus.

11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005257

RESUMO

This article systematically analyzes the historical evolution of the origin, scientific name, medicinal parts, quality evaluation, harvesting and processing and other aspects of Tsaoko Fructus by consulting ancient materia medica, medical books, prescription books in the past dynasties and combining with the modern literature, so as to provide a basis for the development and utilization of famous classical formulas containing Tsaoko Fructus. According to the research, the name of Caoguo(草果) was first used in the Taiping Huimin Heji Jufang(《太平惠民和剂局方》) in the Northern Song dynasty, Tsaoko Fructus is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Caokou, Doukou, Loukou, Laokou and Caodoukou. The mainstream source of Tsaoko Fructus used in the past dynasties is the dried mature fruit of Amomum tsaoko of Zingiberaceae, but Tsaoko Fructus was often used as a nickname for Amomi Fructus Rotundus or Alpiniae Katsumadai Semen during the Song dynasty. Bencao Pinhui Jingyao(《本草品汇精要》) in the Ming dynasty was the earliest materia medica that recorded Tsaoko Fructus as a separate medicinal herb in sections. Under the influence of early ancient books, there were some books that confused Tsaoko Fructus with other Zingiberaceae plants during the Qing dynasty, it was not until modern times that Tsaoko Fructus was distinguished from other plants. The origin of Tsaoko Fructus is Yunnan and Guangxi, and then gradually expanded to Guizhou and other places. Now Yunnan is the province with the largest planting area of Tsaoko Fructus, and has become the main producing area. Since modern times, it has been recorded in the literature that the quality of Tsaoko Fructus is mainly characterized by large, full, red-brown and strong in smell. According to ancient records, the harvest time of Tsaoko Fructus was in the eighth month of the lunar calendar, and they were mostly used for peeling or simmering. Currently, the harvest period of Tsaoko Fructus is October to November, and then sun-dried or dried after harvesting. The records of the properties and functional indications of Tsaoko Fructus are basically consistent with the ancient and modern documents, which is warm in nature, pungent in flavor, belonging to the spleen and stomach meridians, moderate in dryness and dampness, intercepting malaria and eliminating phlegm, used for internal resistance of cold and dampness, abdominal distension and pain, fullness and vomiting, malaria cold and fever, and plague fever. Based on the research results, it is suggested that A. tsaoko should be used as the medicinal base for the development of famous classical formulas containing Tsaoko Fructus, processing method can be according to the requirements of the prescription, and if the requirements of concoction are not indicated, it can be used in the form of raw products.

12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005255

RESUMO

By consulting ancient and modern literature, the herbal textual research of Farfarae Flos has been conducted to verify the name, origin, producing area, quality evaluation, harvesting and processing methods, so as to provide reference for the development and utilization of the famous classical formulas containing Farfarae Flos. According to the research, the results showed that Farfarae Flos was first described as a medicinal material by the name of Kuandonghua in Shennong Bencaojing(《神农本草经》), and the name was used and justified by later generations. The main origin was the folwer buds of Tussilago farfara, in addition, the flower buds of Petasites japonicus were used as medicine in ancient times. The ancient harvesting time of Farfarae Flos was mostly in the twelfth month of the lunar calendar, and the modern harvesting time is in December or before the ground freeze when the flower buds have not been excavated. Hebei, Gansu, Shaanxi are the authentic producing areas with the good quality products. Since modern times, its quality is summarized as big, fat, purple-red color, no pedicel is better. Processing method from soaking with licorice water in the Northern and Southern dynasties to stir-frying with honey water followed by micro-fire in the Ming dynasty, and gradually evolved to the modern mainstream processing method of honey processing. Based on the research results, it is suggested that the dried flower buds of T. farfara, a Compositae plant, should be selected for the development of famous classical formulas containing Farfarae Flos, and the corresponding processed products should be selected according to the specific processing requirements of the formulas, and raw products are recommended for medicinal use without indicating processing requirements.

13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005254

RESUMO

By consulting the ancient and moderm literature, this paper makes a textual research on the name, origin, quality evaluation, harvesting and processing of Olibanum, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. According to the herbal textual research, the results showed that Olibanum was first described as a medicinal material by the name of Xunluxiang in Mingyi Bielu(《名医别录》), until Ruxiang had been used as the correct name since Bencao Shiyi(《本草拾遗》) in Tang dynasty. The main origin was Boswellia carterii from Burseraceae family. The mainly producing areas in ancient description were ancient India and Arabia, while the modern producing areas are Somalia, Ethiopia and the southern Arabian Peninsula. The medicinal part of Olibanum in ancient and modern times is the resin exuded from the bark, which has been mainly harvested in spring and summer. It is concluded that the better Olibanum has light yellow, granular, translucent, no impurities such as sand and bark, sticky powder and aromatic smell. There were many processing methods in ancient times, including cleansing(water flying, removing impurities), grinding(wine grinding, rush grinding), frying(stir-frying, rush frying, wine frying), degreasing, vinegar processing, decoction. In modern times, the main processing methods are simplified to cleansing, stir-frying and vinegar processing. Nowadays, the commonly used specifications include raw, fried and vinegar-processed products. Among the three specifications, raw products is the Olibanum after cleansing, fried products is a kind of Olibanum processed by frying method, vinegar-processed products is the processed products of pure frankincense mixed with vinegar. Based on the research results, it is recommended to select the resin exuded from the bark of B. carterii for the famous classical formulas such as Juanbitang containing Olibanum, processing method should be carried out in accordance with the processing requirements of the formulas, otherwise used the raw products if the formulas without clear processing requirements.

14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989604

RESUMO

The Danggui Yinzi, as one of the classic prescriptions, was first recorded in Yan's Jisheng Prescription and is mainly used to treat various skin diseases with blood deficiency and wind dryness. By referring to ancient books and modern literature researches, this study analyzed and summarized the literature of Danggui Yinzi from the aspects of prescription origin, composition, addition and subtractive changes of flavor, dosage and decocting and taking method, discrimination of prescription and efficacy, raw material and processing of medicinal materials, and modern clinical application. Textual researches explored more than 80 ancient literature and 170 modern literature and showed its content included Angelicae Sinensis Radix, Paeoniae Radix Alba, Chuanxiong Rhizoma, Rehmannia Radix, Tribuli Fructus, Saposhnikoviae Radix, Schizonepetae Spica, Polygoni Multiflora Radix, Astragali Radix, Glycyrrhizae Radix et Rhizoma. It was cooked by water. It was used for the patients with skin diseases and Chinese pattern of blood deficiency wind drying. It has showed a wide range of applications, and similar application in ancient and modern time. This paper provides a more comprehensive reference for the research and development of compound preparation of Danggui Yinzi.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-973743

RESUMO

ObjectiveTo establish the specific chromatogram and thin layer chromatography(TLC) identification method of Kaixinsan(KXS) samples, in order to clarify the key quality attributes and provide reference for the quality evaluation of KXS. MethodHigh performance liquid chromatography(HPLC) specific chromatogram of KXS was developed with YMC Hydrosphere C18 column(4.6 mm×250 mm, 5 μm), the mobile phase was acetonitrile(A)-0.2% formic acid aqueous solution(B) for gradient elution(0-15 min, 2%-20%A; 15-25 min, 20%-25%A; 25-30 min, 25%-30%A; 30-45 min, 30%-31%A; 45-50 min, 31%-44%A; 50-65 min, 44%-45%A; 65-73 min, 45%-75%A; 73-95 min, 75%-100%A; 95-105 min, 100%A; 105-105.1 min, 100%-2%A; 105.1-120 min, 2%A), the detection wavelength was 320 nm. Ultra high performance liquid chromatography-linear ion trap-electrostatic field orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to identify the chemical components of KXS with electrospray ionization(ESI), negative ion mode and scanning range of m/z 50-2 000. TLC identification methods for Poria and Ginseng Radix et Rhizoma in KXS were established. ResultThere were 11 common peaks in the specific chromatogram of KXS, attributed to Polygalae Radix, Poria and Acori Tatarinowii Rhizoma. Taking peak 9(α-asarone) as the reference peak, the relative standard deviations of the retention times of 15 batches of KXS samples were<0.2%. A total of 34 compounds were identified by UHPLC-LTQ-Orbitrap MS, including terpenoids, phenylpropanoids, oligosaccharides and ketones. The established TLC had good separation and was rapid, reliable, simple, feasible, suitable for the identification of Poria and Ginseng Radix et Rhizoma in KXS. ConclusionThe specific chromatogram and TLC of KXS are stable and reproducible. The material basis of KXS is basically clarified by MS, which can provide a reference for the development and quality control of KXS.

16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-973129

RESUMO

Through the textual research and analysis of ancient and modern documents of Acanthopanacis Cortex(AC), this paper combed the variety, origin, harvesting, processing and ancient quality evaluation methods of AC, and clarified the historical context of the mixing of its common counterfeit product(Periplocae Cortex), in order to provide a basis for the development of famous classical formulas containing AC. AC was first published in Shennong Bencaojing with the name of Wujia, Wujiapi is the name rectification in all dynasties since Leigong Paozhilun. According to the description of inflorescence location and fruit morphology of Wujia in the materia medica, it is judged that the mainstream origin of AC used in previous dynasties was Acanthopanax gracilistylus. Periplocae Cortex was mixed with AC in the period of the Republic of China because it was in line with the "like Lycii Cortex, light, brittle and fragrant". The origin of Wujiapi recorded in past dynasties was concentrated in the middle and lower reaches of the Yangtze River, mainly in Hubei, Henan, Anhui and other places. Since modern times, the traditional quality evaluation of AC has been gradually summarized, with thick skin, white color and fragrant smell as the best. The traditional harvesting and processing of AC involved picking the stems in May and July of the lunar calendar, picking the roots in October, and drying in the shade. In modern times, the roots of AC are harvested, washed, peeled and dried in summer and autumn. In the past dynasties, there were rice wine processing, Euodiae Fructus boiling, ginger juice processing and other methods. In modern times, it is usually cut into thick slices after the cleansing. According to the research results, it is suggested that the root bark of A. gracilistylus should be selected as the origin of AC in famous classical formulas, which should be processed into the medicine according to the specific prescription requirements. In addition, it is suggested to restore the medicinal name of Periplocae Cortex as Yangtao, in order to reduce its chaotic influence on the medicinal use of AC.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-973128

RESUMO

This article has systematically reviewed the name, origin, scientific name, producing area, quality evaluation, harvesting and processing methods of Polygonati Odorati Rhizoma(POR) by consulting the materia medica, medical books, prescription books and modern literature, in order to provide a reference for the development of famous classical formulas containing POR. Yuzhu was first recorded in the Shennong Bencaojing under the name of Nyuwei. After that, Weirui was used as the rectification name in the subsequent dynasties, and in recent times, the name of Yuzhu is mostly used in materia medica and prescription books. In ancient times, there were different names for Yuzhu, such as Nyuwei, Weiwei and Weirui. The names of the three are similar and there was a mixed use of the same name and foreign matter in history. In the Tang dynasty, SU Jing listed Nyuwei with the effect of curing dysentery in the intermediate of herbal part of Xinxiu Bencao according to its different efficacy. However, based on Shennong Bencaojing, Mingyi Bielu and the different energy efficiency of medical prescriptions, SU Song of the Northern Song dynasty believed that the three were medicinal materials of different origins. In short, the names of the three have been unclear in history for a long time. According to the development of the time line, this paper examines the names and realities of the three, and concludes that the two(Weiwei and Weirui) are the same medicinal material, that is, Polygonatum odoratum of Liliaceae, and the Nyuwei is Clematis apiifolia of Ranunculaceae, and the source relationship of the three is clarified. The mainstream source of Yuzhu used in the past dynasties was the rhizome of P. odoratum, which was widely distributed in the wild and has a large amount of resources. The origins of Yuzhu recorded in ancient times were mainly Taishan in Shandong, Chuzhou and Shuzhou in Anhui, and Hanzhong in Shaanxi, in modern times, it was produced in northern Hebei and Shaoyang in Hunan with high quality, and in the modern times, Jiangbei Yuzhu from Haimen in Jiangsu, Anyuzhu from Nanling, Anqing and Tongling in Anhui, Guanyuzhu from Fengrun, Yutian, Zunhua, Huailai in Hebei and Suizhong, Jinxi, Jianchang, Lingyuan, Liaoyang, Haicheng, Gaiping in Liaoning, Xiangyuzhu from Shaoyang in Hunan are the authentic medicinal material. In ancient times, the quality of Yuzhu was good if it was fat and white, while in modern times, it is better with thick roots, bright yellow color, soft texture, no stiff skin and no oiliness. In ancient times, the origin processing of POR was mostly dried in the shade, but in modern times, it is mostly sun-dried or dried after steaming and rubbing. The ancient processing was mostly scraped off the skin and soaked in honey water and then steamed through, while the modern one is mostly washed and cut into thick slices for raw use. Based on the conclusion of the herbal textual research, it is suggested that the rhizome of P. odoratum of Liliaceae be used as the source for the development of famous classical formulas, and the corresponding specifications be selected according to the processing requirements of the prescription. In view of the Yiweitang in Wenbing Tiaobian, which uses the method of frying fragrance to achieve the effect of fragrant refreshing the spleen, it can be processed by referring to the stir-frying method in the current version of Chinese Pharmacopoeia.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-973127

RESUMO

Through the textual research and analysis of the variety, origin, processing, quality evaluation and clinical application of Moslae Herba in ancient and modern literature, its origin of materia medica was clarified. Moslae Herba has experienced variety changes in history. Elsholtzia ciliata was the mainstream variety during and before the Song dynasty, however, during the Ming and Qing dynasties, emerging variety of Mosla chinensis rose to the mainstream status due to its remarkable efficacy and the formation of cultivation, and differentiated into two commodities(wild variety of Qingxiangru and cultivated variety of Jiangxiangru), cultivated products formed an authentic producing area in Jiangxi. The three varieties coexisted during the Ming and Qing dynasties, and the Elsholtzia varieties were gradually eliminated. Variety changes have caused changes in the functions and indications of drugs. E. ciliata had the effect of clearing heat and was mainly used to treat heatstroke and cholera, while M. chinensis was used for exogenous wind cold and dampness in the summer because of its warm and strong sweating properties, but not for cholera. Traditional Moslae Herba is mainly harvested in the summer and autumn (flowering to fruiting stage) and the above-ground parts are dry in the shade and used as medicine. Modern Qingxiangru is mostly harvested before the flowering period, and Jiangxiangru is harvested after flowering and fruiting in late summer and early autumn. In summary, according to the 2020 edition of Chinese Pharmacopoeia, the dried above-ground parts of Moslae Herba should be selected for Xinjia Xiangruyin in the Catalogue of Ancient Famous Classical Formulas(The First Batch), mainly the cultivated variety of Jiangxiangru, and the raw products is cut into segments and used as medicine. It is suggested that when applying and developing famous classical formulas containing Moslae Herba at different periods of time today, the origin should be established in conjunction with clinical efficacy.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-964952

RESUMO

In this paper, the name, origin, quality evaluation, producing area and processing methods of Lablab Semen Album in the famous classical formulas were researched by reviewing the ancient materia medica, medical books, prescription books and modern literature. The results showed that the name of Lablab Semen Album in the past dynasties was mostly derived from its shape and color, called Biandou and Baibiandou. The mainstream origin used in the past dynasties was Lablab purpureus, the medicinal parts were mainly white mature seeds, with the addition of the leaves in the Song dynasty and the flowers in the Ming dynasty. Since modern times, the authentic producing areas of Lablab Semen Album are Suzhou, Zhejiang and other places, and now mainly produced in Chuxiong and Xinping, Yunnan and Panzhihua, Sichuan. The traditional quality evaluation of Lablab Semen Album is evaluated as large, solid, full and white. The harvesting time of this herb is recorded from the eighth to the ninth lunar month in related literature, the pods are picked when the seeds are ripe, and the seeds are dried in the sun. In ancient times, the processing of Lablab Semen Album mainly consisted of frying the seeds with skin and then pulverizing for use, or soaking and peeling seeds for raw use. Based on the conclusion of the textual research, it is recommended that the seeds or flowers of the white flowering plants of L. purpureus, a member of the leguminosae, should be used in the famous classical formulas, and the dried seeds or dried flowers of Lablab Semen Album can be used as medicine if the formula did not clearly indicate processing requirements.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-964951

RESUMO

By reviewing ancient materia medica, medical and prescription books, combined with modern literature, the textual research of Stephaniae Tetrandrae Radix has been conducted to verify the name, origin, producing area, harvesting and processing methods. Through textual research, the results show that the mainstream name of this herb recorded in the past dynasties is Fangji, which is also called Hanzhong Fangji because it is produced in Hanzhong city, and after the Tang dynasty, it was gradually divided into Hanfangji and Mufangji, and there is the saying that Han Zhushuiqi, Mu Zhufengqi. The names of Fenfangji and Guangfangji were first seen in the republic of China. In addition, Fenfangji was once distributed in Hankou, so it was also known as "Hanfangji", which is easily confused with the traditional Hanzhong Fangji for short. Based on the original research, it is concluded that Aristolochia heterophylla(Hanzhong Fangji)is the mainstream of Stephaniae Tetrandrae Radix used in the Qing dynasty and before, and the application history of Cocculus orbiculatus can be traced back to before the Tang dynasty. After the Ming dynasty, Stephania tetrandra gradually became another main origin, and in the Republic of China, A. fangchi was used as a medicine for Stephaniae Tetrandrae Radix, but in modern times it was banned because it contained aristolochic acid as a toxic ingredient, and S. tetrandra has become the mainstream legal origin. The traditional production area of Hanzhong Fangji is Hanzhong, Shaanxi province, while today the mainstream of S. tetrandra is manly produced in Jiangxi and other places. Based on the quality evaluation research, the quality of Hanzhong Fangji is better with the radial texture of section used as radial solution, yellow solid and fragrant. Fenfangji with solid quality, white inside, powdered enough, less fiber and radiating texture is better. From the harvesting and processing research, the root of Fangji is mostly harvested in spring and autumn, and the outer bark should be removed in some literature. Before the Ming dynasty, this herb was dried in the shade, and after the Ming dynasty, it was dried in the sun. The modern production processing of Fangji is to harvest it in autumn, wash it, remove the rough bark, dry it to half dry, cut it into sections, and then cut it longitudinally if it is large, and dry it. Based on the results, combined with current studies on the toxicity of aristolochic acid and influencing factors such as commercial circulation, it is suggested that S. tetrandra should be used as the origin of Fangji, the processed products are selected according to the prescription requirements, and those without specified requirements can be processed by referring to the raw products in the 2020 edition of Chinese Pharmacopoeia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...