Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
MethodsX ; 13: 102884, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39224451

RESUMO

The actin cytoskeleton governs the dynamic functions of cells, ranging from motility to phagocytosis and cell division. To elucidate the molecular mechanism, in vitro reconstructions of the actin cytoskeleton and its force generation process have played essential roles, highlighting the importance of efficient purification methods for actin-binding proteins. In this study, we introduce a unified purification method for actin-binding proteins, including capping protein (CP), cofilin, ADF, profilin, fascin, and VASP, key regulators in force generation of the actin cytoskeleton. Exploiting a His-Strep-tag combined with a TEV protease cleavage site, we purified these diverse actin-binding proteins through a simple two-column purification process: initial purification through a Strep-Tactin column and subsequent tag removal through the reverse purification by a Ni-NTA column. Biochemical and microscopic assays validated the functionality of the purified proteins, demonstrating the versatility of the approach. Our methods not only delineate critical steps for the efficient preparation of actin-binding proteins but also hold the potential to advance investigations of mutants, isoforms, various source species, and engineered proteins involved in actin cytoskeletal dynamics.•Unified purification method for various actin-binding proteins.•His-Strep-tag and TEV protease cleavage for efficient purification.•Functional validation through biochemical and microscopic assays.

2.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063133

RESUMO

Omics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography-mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.


Assuntos
Neoplasias da Mama , Proteínas de Transporte , Progressão da Doença , Proteínas dos Microfilamentos , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Feminino , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Metaboloma , Metabolômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
3.
Gene ; 927: 148743, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964493

RESUMO

Fascin-1 (FSCN1) is recognized as an actin-binding protein, commonly exhibits up-regulation in breast cancer (BC) and is crucial for tumor invasion and metastasis. The existence of FSCN1 gene polymorphisms may raise the potential for developing BC, and there are still no studies focusing on the relationship between the FSCN1 rs2966447 variant and BC risk in Egyptian females. Thus, we investigated the serum fascin-1 levels in BC patients and the association between the FSCN1 rs2966447 variant with its serum levels and BC susceptibility. Genotyping was conducted in 153 treatment-naïve BC females with different stages and 144 apparent healthy females by TaqMan® allelic discrimination assay, whereas serum fascin-1 level quantification was employed by ELISA. The FSCN1 rs2966447 variant demonstrated a significant association with BC susceptibility under all utilized genetic models, cancer stages and estrogen receptor negativity. Also, BC females with AT and TT genotypes had higher serum fascin-1 levels and tumor size than those with the AA genotype. Moreover, serum fascin-1 levels were significantly elevated in the BC females, notably in those with advanced-stages. Furthermore, serum fascin-1 levels were markedly positively correlated with number of positive lymph nodes as well as tumor size. Collectively, these findings revealed that the FSCN1 rs2966447 variant may be regarded as a strong candidate for BC susceptibility. Also, this intronic variant is associated with increased serum fascin-1 levels and tumor size.


Assuntos
Neoplasias da Mama , Proteínas de Transporte , Predisposição Genética para Doença , Proteínas dos Microfilamentos , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/sangue , Proteínas de Transporte/genética , Proteínas de Transporte/sangue , Pessoa de Meia-Idade , Adulto , Estudos de Casos e Controles , Genótipo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Egito
4.
Front Oncol ; 14: 1405306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690162

RESUMO

[This corrects the article DOI: 10.3389/fonc.2023.1238464.].

5.
Biomed Pharmacother ; 175: 116785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781869

RESUMO

Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.


Assuntos
Proteínas de Transporte , Neoplasias Colorretais , Cinesinas , Proteínas dos Microfilamentos , Invasividade Neoplásica , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Cinesinas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tionas/farmacologia , Antineoplásicos/farmacologia
6.
Sci Rep ; 14(1): 10049, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698008

RESUMO

Although some studies have reported on the expression and clinical significance of Fascin-1 (FSCN1) in liver cancer, the clinical application and differential diagnosis value of FSCN1 in liver cancer are still unclear. The aim of this study was to analyze the expression level of FSCN1 protein in liver cancer tissues and explore its diagnostic and application value in differentiating between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The immunehistochemical analysis was used to detect the expression of FSCN1 in 108 cases of HCC, 26 cases of ICC, 23 cases of liver cirrhosis, and 11 cases of normal liver tissues. The differences in the positive expression rate and strong positive expression rate of FSCN1 among different groups were analyzed. The positive rate of FSCN1 in normal liver tissues, liver cirrhosis, HCC, and ICC tissues was 0.0% (0/11), 0.0% (0/23), 13.9% (15/108), and 92.3% (24/26), respectively, while the strong positive rate was 0.0% (0/11), 0.0% (0/23), 0.9% (1/108), and 69.2% (18/26), respectively. Both the positive rate and strong positive rate of FSCN1 in ICC tissues were significantly higher than those in HCC, liver cirrhosis, and normal liver tissues. Additionally, the positive rate of FSCN1 in moderately to poorly differentiated HCC tissues was 18.8% (15/80), significantly higher than in well-differentiated HCC (0.0%, 0/28) (P = 0.031). In liver cancer, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FSCN1 positive prediction for ICC were 92.3%, 86.1%, 61.5%, and 97.9%, respectively, whereas the sensitivity, specificity, PPV, and NPV of FSCN1 strong positive prediction for ICC were 69.2%, 99.1%, 94.7%, and 93.0%, respectively. These results suggest that FSCN1 may play an important role in the occurrence and progression of liver cancer, and it can be used as a novel diagnostic marker for ICC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Proteínas de Transporte , Colangiocarcinoma , Neoplasias Hepáticas , Proteínas dos Microfilamentos , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Idoso , Adulto , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Diagnóstico Diferencial , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Sensibilidade e Especificidade
7.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
8.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426543

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor with a poor prognosis. Fascin actin­bundling protein 1 (FSCN1) has been reported to play a crucial role in the development and progression of LSCC; however, the underlying molecular mechanisms remain unknown. Herein, a whole transcriptome microarray analysis was performed to screen for differentially expressed genes (DEGs) in cells in which FSCN1 was knocked down. A total of 462 up and 601 downregulated mRNA transcripts were identified. Functional annotation analysis revealed that these DEGs were involved in multiple biological functions, such as transcriptional regulation, response to radiation, focal adhesion, extracellular matrix­receptor interaction, steroid biosynthesis and others. Through co­expression and protein­protein interaction analysis, FSCN1 was linked to novel functions, including defense response to virus and steroid biosynthesis. Furthermore, crosstalk analysis with FSCN1­interacting proteins revealed seven DEGs, identified as FSCN1­interacting partners, in LSCC cells, three of which were selected for further validation. Co­immunoprecipitation validation confirmed that FSCN1 interacted with prostaglandin reductase 1 and 24­dehydrocholesterol reductase (DHCR24). Of note, DHCR24 is a key enzyme involved in cholesterol biosynthesis, and its overexpression promotes the proliferation and migration of LSCC cells. These findings suggest that DHCR24 is a novel molecule associated with FSCN1 in LSCC, and that the FSCN1­DHCR24 interaction may promote LSCC progression by regulating cholesterol metabolism­related signaling pathways.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Transporte , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Proteínas dos Microfilamentos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Actinas/metabolismo , Neoplasias Laríngeas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Colesterol , Oxirredutases/genética , Oxirredutases/metabolismo , Esteroides , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células
9.
Open Biol ; 14(3): 230376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503329

RESUMO

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Assuntos
Actinas , Proteínas de Transporte , Proteínas dos Microfilamentos , Pseudópodes , Actinas/metabolismo , Pseudópodes/metabolismo , Ligação Proteica , Movimento Celular
10.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
11.
Pathol Res Pract ; 254: 155079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219494

RESUMO

Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Biomarcadores , Prognóstico , Linhagem Celular Tumoral , Proteínas de Transporte , Proteínas dos Microfilamentos/metabolismo
12.
bioRxiv ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260322

RESUMO

Fascin crosslinks actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-electron microscopy, cryo-electron tomography coupled with custom denoising, and computational modeling to probe fascin's F-actin crosslinking mechanisms across spatial scales. Our fascin crossbridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis, and simulations show how structural plasticity enables fascin to bridge varied inter-filament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncovers geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable crosslinks that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.

13.
J Biomol Struct Dyn ; 42(1): 435-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029713

RESUMO

Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Actinas/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo
14.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069260

RESUMO

Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Regiões Promotoras Genéticas , Genes Reporter , Neoplasias/metabolismo , Células Dendríticas , Luciferases/metabolismo , Microambiente Tumoral
15.
Mol Cell Biochem ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145448

RESUMO

The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.

16.
Front Oncol ; 13: 1238464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841433

RESUMO

Background: Tumor invasion and metastasis are responsible for the majority of cancer-related deaths. The identification of molecules involved in these processes is crucial to design effective treatments that can halt the progression of cancer. To spread and metastasize, tumor cells must restructure their cytoskeleton and emit protrusions. A key molecule in this process of creating these invading structures is Fascin1, the main protein involved in the formation of actin cytoskeleton bundles and a consistent marker of bad prognosis in several types of cancer. Recent studies have shown that imipramine, an FDA- and EMA-approved antidepressant, can block Fascin1and prevent the formation of actin bundles, making it a promising candidate for the treatment of Fascin1-expressing cancers. As a result, a clinical trial will be conducted to assess the efficacy of imipramine being the first experimental clinical study selecting patients based on Fascin1 expression. Methods: The HITCLIF trial is a multicenter, double-blind, placebo-controlled, randomized and non-commercial phase II clinical trial conducted in parallel groups to evaluate the effectiveness of the tricyclic antidepressant imipramine as anti-invasive agent in the treatment of localized colon, rectal and triple negative breast cancer patients with overexpression of Fascin1. Eligible patients will be randomly assigned, in a 1:1 ratio, to receive imipramine or placebo. Patients will be stratified into 2 groups according to whether administration of imipramine is concomitant with neoadjuvant chemotherapy regimen. Group A will receive imipramine alone without neoadjuvant chemotherapy, while Group B will receive imipramine treatment along with the standard neoadjuvant chemotherapy regimen. The primary endpoint of the trial is the grade of alteration in the prognostic histopathological features at invasive margins (tumor budding, cytoplasmic pseudo-fragments, tumor growth pattern, and peritumoral lymphocytic infiltration). Discussion: Fascin1 is an interesting therapeutical target as it plays a causative role in the invasion and metastasis of cancer cells. Moreover, its expression is virtually absent in normal epithelia but highly expressed in cancer with bad prognosis. In silico, in vitro and in vivo studies by our group have demonstrated that the antidepressant imipramine has Fascin1-dependant anti-invasive and anti-metastatic effects in colorectal cancer cells. Now we are recruiting patients in a clinical trial based on Fascin1 over-expression in which administration of imipramine will be carried out during the period between the diagnosis biopsy and surgical resection to explore the drug effects on tumor invasive front. Clinical trial registration: https:///www.clinicaltrialsregister.eu/ctr-search/trial/2021-001328-17/ES, identifier 2021-001328-17.

17.
Asian Pac J Cancer Prev ; 24(10): 3517-3523, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898858

RESUMO

BACKGROUND: One of the main causes of cancer-related deaths is breast cancer. Fascin-1(FSCN1) is an actin-binding protein that is present in the mesenchymal, neuronal, and endothelial cells of mammals. Patients with breast cancer have been found to have FSCN1 overexpression. CD44 is crucial for the development, invasion, and tumour spread. Therefore, we aimed to investigate the role of FSCN1&CD44 gene polymorphisms in breast cancer (BC) risk and prognosis. MATERIALS & METHODS: A total of 96 BC patients and 50 controls were included in the case-control study for risk prediction. We examined the association between The SNPs on FSCN1(rs3801004) and CD44(rs353639) and BC susceptibility and clinicopathological features using a real-time PCR in a cohort of the Egyptian population.  Results: A significant association of both SNPs on FSCN1(rs3801004)C allele and CD44(rs353639)A allele and BC susceptibility(adjusted OR=4.38,95%CI:2.6-7.4,p<0.001, and adjusted OR=4.44,95%CI:2.65-7.44,p <0.001,respectively). Moreover, CC genotype in FSCN1(rs3801004) were likely to progress to developing G2&G3 and N2&N3 and stage II & stage IV, according to the TNM staging and GG+GC genotypes increased within individuals who had a positive family history of BC. Individuals who carry at least one A allele for CD44rs353639 were likely to progress developing N2 according to the TNM in BC patients. CONCLUSIONS: These findings suggest that both SNPs on FSCN1 (rs3801004) and CD44 (rs353639) affected BC susceptibility. FSCN1 (rs3801004) genetic variants may have a significant effect on BC prognosis. However, CD44 (rs353639) affected lymph node invasions in BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Prognóstico , Estudos de Casos e Controles , Predisposição Genética para Doença , Egito , Células Endoteliais , Genótipo , Polimorfismo de Nucleotídeo Único , Proteínas dos Microfilamentos/genética , Receptores de Hialuronatos/genética , Proteínas de Transporte/genética
18.
J Immunoassay Immunochem ; 44(5-6): 396-417, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37694977

RESUMO

Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. ß-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate ß-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by ß-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that ß-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic ß-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , beta Catenina/metabolismo , Tenascina , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Carcinoma/patologia
19.
Adv Med Sci ; 68(2): 290-297, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37660543

RESUMO

Cancer cell migration and metastasis are the biggest problems in the treatment of cancer patients. The most aggressive breast cancer (BC) is the triple-negative type. Therefore, effective therapeutic targets that limit cell migration are sought. One such target may be fascin, as its overexpression is characteristic to triple-negative breast cancer. The high level of fascin enables the formation of protrusion and thus promotes the invasion of cancer cells. Fascin also shows co-localization or functional relationships with other proteins. These are proteins involved in the epithelial-mesenchymal transition process, vimentin, cadherins, ß-catenin, and matrix metalloproteinases 2/9 (MMP-2/9). Fascin is also involved in many signaling pathways protein kinase C-δ (PKCδ), Wnt/ß-catenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and phosphatidylinositol 3-kinase (PI3K)-Akt. Therefore, in this article, we review currently available in vitro studies and compare them with The Cancer Genome Atlas (TCGA) data analysis of BC patients to demonstrate the role of fascin in the migration and invasion of cancer cells.


Assuntos
Neoplasias da Mama , beta Catenina , Feminino , Humanos , beta Catenina/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo
20.
Oncol Lett ; 26(3): 379, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559574

RESUMO

Fascin (FSCN) is an actin-binding protein that serves a critical role in cell migration and invasion, contributing to tumor metastasis. However, there is little known about the function of FSCN family in kidney renal clear cell carcinoma (KIRC). The present study used the UALCAN, gene expression profiling interactive analysis, The Cancer Genome Atlas, cBioPortal, STRING and The Tumor Immune Estimation Resource databases to investigate the transcription level, genetic alteration and biological function of FSCNs in KIRC and their association with the prognosis value and immune cell infiltration in patients with KIRC. Results showed that the expression of FSCN1 and FSCN3 was markedly upregulated in patients with KIRC, while the expression of FSCN2 showed an opposite trend, which was the same as the experiments. Furthermore, the expression levels of FSCNs were associated with pathological stage, molecular subtypes and tumor grade. The expression levels of FSCNs were statistically correlated with the immune cell infiltration in KIRC. Higher expression levels of FSCN1 and FSCN3 were associated with worse overall survival (OS) and progression-free interval of patients bearing KIRC. Univariate and multivariate analysis demonstrated that FSCN2 was an independent risk factor for OS time in KIRC. Furthermore, mutations in FSCNs were significantly associated with poor OS and progression-free survival in patients with KIRC. The FSCNs were involved in pathways including focal adhesion, endocytosis, hypertrophic cardiomyopathy, regulation of actin cytoskeleton. The results indicated that FSCN2 might serve as an independent prognostic factor for OS of KIRC and that FSCN1 and FSCN3 can be used as favorable biomarkers for predicting clinical outcomes in KIRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA