Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
BMC Oral Health ; 24(1): 696, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879492

RESUMO

BACKGROUND: An optimum restoration for reconstructing endodontically treated teeth should provide excellent marginal adaptation, high fracture resistance as well as maximum tooth structure conservation. The purpose of this study was to evaluate the marginal adaptation and fatigue resistance of different coronal restorations in endodontically treated premolars. METHODS: Thirty sound maxillary first premolars were endodontically treated and received MOD cavities. Teeth were randomly allocated into three groups (n = 10) according to the type of coronal restoration: Group R: polyethylene fibers (ribbond), fibers-reinforced composite (everX posterior) and final layer of nano-hybrid composite. Group O: indirect lithium disilicate overlay and Group C: fiber-post, resin composite restoration, and lithium disilicate crown. Marginal gap assessment was performed before and after thermocycling (5000 cycles) using stereomicroscope. Samples were subjected to stepwise-stress loading starting at 200 N, and increased by 100 N in each step until failure occurred. Statistical analysis was done by One-way ANOVA followed Tukey`s Post Hoc test for multiple comparison. Paired t test was used to compare the marginal adaptation before and after thermocycling. Survival probability was evaluated by Life table survival analysis. Failure mode analysis was performed with Chi-square test. RESULTS: Marginal gap was significantly the lowest in group R (37.49 ± 5.05) and (42.68 ± 2.38), while being the highest in group C (59.78 ± 5.67) and (71.52 ± 5.18) in before and after thermocycling respectively (P < 0.0001). Fatigue resistance was the highest for group O (1310.8 ± 196.7), and the lowest for group R (905.4 ± 170.51) with a significant difference between groups (P < 0.0001). Crown group had the highest percentage (80%) of catastrophic failure, while, overlay group exhibited the lowest (20%). CONCLUSIONS: Direct restoration without cuspal coverage using ribbon fibers with short FRC provided better marginal adaptation than indirect overlays and crowns, but fatigue resistance wasn't significantly improved. Adhesive ceramic overlays showed the best fatigue performance and the least catastrophic failure rate compared to both direct fiber-reinforced composite and indirect ceramic full coverage restorations. CLINICAL SIGNIFICANCE: Indirect adhesive overlays are a suitable, more conservative restorative option for endodontically treated teeth than full coverage restorations, especially when tooth structure is severely compromised.


Assuntos
Dente Pré-Molar , Resinas Compostas , Coroas , Adaptação Marginal Dentária , Técnica para Retentor Intrarradicular , Dente não Vital , Humanos , Resinas Compostas/química , Técnicas In Vitro , Restauração Dentária Permanente/métodos , Porcelana Dentária/química , Análise do Estresse Dentário , Polietilenos/química , Falha de Restauração Dentária , Teste de Materiais , Materiais Dentários/química
2.
Dent Mater ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38926014

RESUMO

PURPOSE: This study aimed to reproduce and translate clinical presentations in an in vitro set-up and evaluate laboratory outcomes of mechanical properties (flexural strength, fatigue resistance, wear resistance) and link them to the clinical outcomes of the employed materials in the Radboud Tooth Wear Project (RTWP). MATERIALS AND METHODS: Four dental resin composites were selected. 30 discs (Ø12.0 mm, 1.2 mm thick) were fabricated for each of Clearfil TM AP-X (AP), Filtek TM Supreme XTE (FS), Estenia TM C&B (ES), and Lava Ultimate (LU). Cyclic loading (200 N, 2 Hz frequency) was applied concentrically to 15 specimens per group with a spherical steatite indenter (r = 3.18 mm) in water in a contact-load-slide-liftoff motion (105 cycles). The wear scar was analysed using profilometry and the volume loss was digitally computed. Finally, all specimens were loaded (fatigued specimens with their worn surface loaded in tension) until fracture in a biaxial flexure apparatus. The differences in volume loss and flexural strength were determined using regression analysis. RESULTS: Compared to AP and FS, ES and LU showed a significantly lower volume loss (p < 0.05). Non-fatigued ES specimens had a similar flexural strength compared to nonfatigued AP, while non-fatigued FS and LU specimens had a lower flexural strength (p < 0.001; 95 %CI: -80.0 - 51.8). The fatigue test resulted in a significant decrease of the flexural strength of ES specimens, only (p < 0.001; 95 %CI: -96.1 - -54.6). CLINICAL RELEVANCE: These outcomes concur with the outcomes of clinical studies on the longevity of these composites in patients with tooth wear. Therefore, the employed laboratory test seems to have the potential to test materials in a clinically relevant way.

3.
Small ; : e2402041, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855994

RESUMO

In response to the critical challenges of interfacial impedance and volumetric changes in Li(1+x)AlxTi(2­x)(PO4)3 (LATP)-based lithium metal batteries, an elastomeric lithium-conducting interlayer fabricates from fluorinated hydrogenated nitrile butadiene rubber (F-HNBR) matrix is introduced herein. Owing to the vulcanization, vapor-phase fluorination, and plasticization processes, the lithium-conducting interlayer exhibits a high elasticity of 423%, exceptional fatigue resistance (10 000 compression cycles), superior ionic conductivity of 6.3 × 10-4 S cm-1, and favorable lithiophilicity, rendering it an ideal buffer layer. By integrating the F-HNBR interlayer, the LATP-based lithium symmetric cells demonstrate an extended cycle life of up to 1600 h at 0.1 mA cm-2 and can also endure deep charge/discharge cycles (0.5 mAh cm-2) for the same duration. Furthermore, the corresponding lithium metal full cells achieve 500 cycles at 0.5 C with 98.3% capacity retention and enable a high-mass-loading cathode of 11.1 mg cm-2 to operate at room temperature.

4.
Acta Diabetol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856757

RESUMO

AIMS: Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS: The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS: The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS: Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.

5.
Polymers (Basel) ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794581

RESUMO

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

6.
Adv Mater ; : e2405519, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801117

RESUMO

Pushing intercalation-type cathode materials to their theoretical capacity often suffers from fragile Li-deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g-1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah-level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X-ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next-generation high-energy-density battery materials through structural chemistry design.

7.
Eur J Appl Physiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772923

RESUMO

BACKGROUND: In general, it has been suggested that females are more fatigue-resistant than males, with the magnitude of difference being most pronounced during low-intensity sustained contractions. However, the mechanisms for the apparent sex difference have not yet been fully elucidated in the literature. This study aimed to examine sex-related differences in fatigability and patterns of neuromuscular responses for surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude and frequency (MPF) characteristics during a sustained submaximal bilateral, isometric leg extension muscle action. METHODS: A sample of 20 young recreationally active males and females with previous resistance training experience performed a sustained, submaximal, bilateral isometric leg extension until task failure. Time-to-task failure was compared using a nonparametric bootstrap of the 95% confidence interval for the mean difference between males and females. Additionally, patterns of response for sEMG and sMMG amplitude and MPF of the dominant limb were examined using linear mixed effect models. RESULTS: There were no differences in time-to-task failure between males and females. Additionally, neuromuscular responses revealed similar patterns of responses between males and females. Interestingly, sEMG amplitude and sMMG amplitude and MPF all revealed non-linear responses, while sEMG MPF demonstrated linear responses. CONCLUSION: These data revealed that time-to-task failure was not different between males and females during sustained submaximal bilateral, isometric leg extension. Interestingly, the parallel, non-linear, increases in sEMG and sMMG amplitude may indicate fatigue induced increases in motor unit recruitment, while the parallel decreases in sMMG MPF may be explained by the intrinsic properties of later recruited motor units, which may have inherently lower firing rates than those recruited earlier.

8.
PeerJ ; 12: e17418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799069

RESUMO

Aim: Assess the effect of simulated clinical use and sterilization on the cyclic fatigue resistance of Race Evo and Tia Tornado Blue nickel titanium (NiTi) files. Materials and Methods: For this study, a total of sixty-four NiTi files were selected, with thirty-two files each from two different manufacturers. Files from each manufacturer were subdivided into four subgroups (n = 8) based on the test parameters. The control groups included files that were neither used nor sterilized. Files from the test groups were used to prepare the root canals of extracted mandibular premolars and then sterilized. This procedure was repeated once, twice, or thrice, depending on the test group. All files were then subjected to a cyclic fatigue test. Data was statistically analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Results: No significant difference was observed in the number of cycles to failure (NCF) among the subgroups for both types of files (P = 0.869 for Tia Tornado Blue, P = 0.626 for Race Evo). Tia Tornado Blue files displayed significantly higher NCF values in the control (P = 0.021), once (P = 0.027), and thrice (P = 0.031) usage groups when compared to Race Evo files. Conclusions: Repeated clinical use and sterilization for up to three cycles did not affect the cyclic fatigue resistance of Race Evo and Tia Tornado Blue files.


Assuntos
Níquel , Esterilização , Titânio , Esterilização/métodos , Humanos , Falha de Equipamento , Teste de Materiais , Preparo de Canal Radicular/instrumentação
9.
J Pharm Bioallied Sci ; 16(Suppl 1): S254-S257, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595510

RESUMO

Background: Maxillary molar endodontic treatments require the right post and core system. This study tested cast metal, glass fiber with composite resin, carbon fiber with composite resin, and zirconia post and core materials. Materials and Methods: Sixty removed human maxillary teeth were randomly divided into four post and core material groups (n = 15 per group). The teeth acquired their post and core system after normal endodontic treatment. Fracture resistance, cyclic fatigue resistance, and microleakage analyses were statistically assessed. Results: The zirconia post and core material had the highest fracture resistance (mean: 900 N), followed by carbon fiber with composite resin, cast metal, and glass fiber with composite resin. Zirconia had the highest mean cycles to failure (120,000), followed by carbon fiber with composite resin (100,000), cast metal (110,000), and glass fiber with composite resin (90,000). Zirconia had the lowest mean microleakage score (1.8), and glass fiber with composite resin, the highest (3.0). Conclusion: The zirconia post and core material outperformed the others in fracture resistance, cyclic fatigue resistance, and sealing. The cast metal has better fracture and cycle fatigue resistance than glass fiber with composite resin. These findings help doctors choose maxillary molar endodontic post and core materials.

10.
J Esthet Restor Dent ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665052

RESUMO

OBJECTIVES: This study aimed to assess the influence of translucent monolithic versus bilayered crowns and whether the use of a CoCr base abutments affects the fatigue and fracture resistance of screwed implant-supported single crowns with external connections under mechanical cycling. MATERIALS AND METHODS: Fifty specimens were divided into groups: (1) metal-ceramic (MC) crown, (2) veneered zirconia crown (Zr), (3) veneered zirconia crown with a CoCr base abutment (ZrB), (4) monolithic translucent zirconia crown (MZr), and (5) monolithic translucent zirconia crown with a CoCr base abutment (MZrB). Specimens underwent mechanical cycling (5 × 106 cycles; 150 N) evaluating fatigue resistance (number of failures) and those that failed were subsequently subjected to fractographic analyses (stereomicroscope and scanning electron microscope) to evaluate failure location and area, and maximum fracture load was also measured. RESULTS: The failure-related survival rate (100%) and maximum fracture resistance of the MZrB were significantly higher than those of MC and Zr (50%; p < 0.05). There were no significant differences in the failure rate and fracture resistance when a CoCr base abutment was used or not in the translucent monolithic Zr groups (p > 0.05;MZrB vs. MZr). Failure location, with MC crowns' fractures, noted at the screw area (p = 0.043), while all-ceramic crowns were mostly in the cuspid and to failure area, the Zr group had the largest mean (15.55 ± 9.17 mm2) among the groups, significant difference only when compared with MC (1.62 ± 0.81 mm2) (p = 0.025). CONCLUSIONS: Translucent monolithic zirconia crowns exhibited significantly higher fatigue and fracture resistance compared with conventional MC and bilayered crowns. CLINICAL SIGNIFICANCE: The appropriate choice of material and manufacturing technique is crucial for predicting the higher clinical performance of single crowns. Enhanced mechanical resistance in terms of fatigue and fracture resistance can be achieved by replacing MC and bilayered restorations with computer-aided design and computer-aided manufacturing monolithic zirconia.

11.
Chemistry ; 30(35): e202400328, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38646974

RESUMO

The chemically triggered reversible switching of pH-responsive hydrazones involves rotary motion-induced configurational changes, serving as a prototype for constructing an array of molecular machines. Typically, the configurational isomerization of such switches into two distinct forms (E/Z) occurs through the alteration of the pH the medium, achieved by successive additions of acid and base stimuli. However, this process results in intermittent operation due to the concomitant accumulation of salt after each cycle, limiting switching performance to only a few cycles (5-6). In this context, we introduce a novel strategy for the autonomous E/Z isomerization of hydrazones in acetonitrile using pulses of trichloroacetic acid as a chemical fuel. The use of this transient acid enabled reversible switching of hydrazones even after 50 cycles without causing significant fatigue. To test the broad viability of the fuel, a series of ortho/para-substituted hydrazones were synthesized and their switching performance was investigated. The analysis of kinetic data showed a strong dependency of switching operations including the lifetime of transient state, on the electronic properties of substituents. Finally, a distinct color change from yellow to orange due to reversible switching of the para-methoxy substituted hydrazone was employed for the creation of rewritable messages on commercially available paper.

12.
J Endod ; 50(7): 1011-1016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642733

RESUMO

INTRODUCTION: The purpose of this study was to evaluate the effect of side flattening of cutting flutes on the cyclic resistance and torsional resistance of nickel-titanium files. METHODS: Both novel flattened Platinum V.EU (PL) and standard nonflattened CC Premium V.EU (CC) rotaries were tested. For cyclic fatigue tests, all the files were rotated in an artificial root canal with a curvature of 45° and a radius of 6.06 mm at 300 rpm (n = 15 in each group). The number of cycles to failure (NCF) was calculated. For torsional tests, the files were rotated at 2 rpm clockwise until fracture occurred. The maximum torque value at fracture was measured and the toughness and distortion angle were computed. Subsequently, 5 fragments were randomly selected in each experiment, the cross-section and longitudinal direction of the fragments were photographed using a scanning electron microscope. An unpaired t-test was performed at a significance level of 95%. RESULTS: There was a statistically significant difference in NCF between CC and PL (P < .05). CC showed higher NCF than PL. There was no statistically significant difference between CC and PL with regards to the parameters related to torsional resistance (distortion angle, ultimate strength, and toughness) (P > .05). CONCLUSION: Within the limitations of this study, side flattening of the file did not improve cyclic resistance or torsional resistance of the files. As side flattening may reduce a file's cyclic resistance, such files should be used with caution in clinical practice.


Assuntos
Falha de Equipamento , Níquel , Preparo de Canal Radicular , Titânio , Torção Mecânica , Preparo de Canal Radicular/instrumentação , Teste de Materiais , Desenho de Equipamento , Torque , Microscopia Eletrônica de Varredura , Instrumentos Odontológicos , Ligas Dentárias/química
13.
Materials (Basel) ; 17(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541540

RESUMO

Cement, as a construction material, has low thermal resistance, inherent fire resistance, and is incombustible up to a certain degree. However, the loss of its mechanical performance and spalling are its primary issues, and it thus cannot retain its performance in refractory applications. The present study explores the performance of geopolymer formulations that have excellent fire resistance properties for potential refractory applications. This study is unique, as it investigates advanced solid geopolymer formulations that need only water to activate and bind. Various solid geopolymer formulations with fly ash as a precursor; potassium hydroxide and potassium silicate as activators; and mullite and alumina as refractory aggregates were studied for their compressive strength at up to 1100 °C and compared with their two-part conventional liquid alkaline geopolymer counterparts. Advanced solid geopolymer formulations with mullite and alumina as refractory aggregates had mechanical strength values of 84 MPa and 64 MPa post-1100 °C exposure and were further exposed to ten thermal cycles of 1100 °C to study their fatigue resistance and post-exposure compressive strengths. The geopolymer sample with mullite as a refractory aggregate yielded 115.2 MPa compressive strength after the fourth cycle of exposure. This sample was also studied for its temperature distribution upon direct flame exposure. All the geopolymer formulations displayed a drop in compressive strength at 600 °C due to viscous sintering and then a rise in strength at 1100 °C due to phase transformation. X-ray diffraction studies revealed that the formation of crystalline phases such as leucite, sanidine, and annite were responsible for the superior strengths at 1100 °C for the alumina- and mullite-based geopolymer formulations.

14.
J Endod ; 50(6): 827-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431197

RESUMO

INTRODUCTION: This study aimed to investigate the effect of radiotherapy and taper of root canal preparation on the biomechanical behavior of mesial roots of mandibular molars. METHODS: Eighty mandibular molars with 2 canals in the mesial root were randomly allocated into 2 groups (n = 40): one group underwent irradiation (60 Gy), while the other did not. Subsequently, the mesial roots were sectioned and each group was subdivided into 5 subgroups (n = 8), according to the preparation taper: no preparation (control); 25.03; 25.04; 25.06; and 25.08. All groups were considered homogeneous regarding their dimensions, weight, and morphology. The prepared specimens were embedded in cylindrical plastic molds and subjected to a cyclic fatigue test. A failure analysis was performed according to the extension and course of the fractures. Two-way ANOVA, Tukey's post-hoc, Fisher's exact, and Kaplan-Meier tests were conducted to evaluate the obtained data (α = 5%). RESULTS: Fatigue resistance decreased as the taper of the preparation increased (P < .05). Preparation 25.03 presented significantly higher values only than 25.08 (P < .05), while 25.04, 25.06, and 25.08 were considered similar (P > .05). Irradiation significantly reduced the biomechanical performance (P < .05). Survival analysis corroborated these findings. There were no differences in the distribution of fracture types among the groups (P > .05). CONCLUSION: The biomechanical behavior of the mesial roots of the mandibular molars decreased significantly in the face of irradiation and as the taper of the preparation increased.


Assuntos
Mandíbula , Dente Molar , Preparo de Canal Radicular , Raiz Dentária , Humanos , Fenômenos Biomecânicos , Preparo de Canal Radicular/métodos , Raiz Dentária/efeitos da radiação , Análise do Estresse Dentário
15.
J Endod ; 50(4): 520-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311116

RESUMO

INTRODUCTION: This study aimed to evaluate the effects from the memory-triple (MT) heat treatment on the fatigue resistance of the Reciproc by comparison with the file systems of same geometry. METHODS: Reciproc files subjected to MT heat treatment technology were designated as Group RMT and were compared with the original Reciproc (Group REC) and Reciproc Blue (Group REB). Each NiTi file from 3 groups (n = 15) was operated reciprocally with a repetitive up-and-down movement in the curved canal with 4 mm of pecking distance inside of the simulated canal at body temperature. When each file fractured, the time until fracture was recorded. The length of the fractured fragment was measured. Fractured fragments were observed under scanning electron microscope (SEM) to evaluate the topographic features of the surface. Differential scanning calorimetry (DSC) analysis was performed to estimate phase transformation temperatures. One-way analysis of variance and Duncan post hoc comparison were applied to compare among the groups at a significance level of 95%. RESULTS: RMT showed significantly higher fracture resistance (P < .05), whereas there was no difference in fatigue resistance between REC and REB. SEM examination showed the files from the 3 groups had similar topographic features. RMT showed a peak of austenite peak (Ap) at a temperature (52°C) higher than body temperature, whereas REC and REB showed Ap at 37 and 32°C, respectively. CONCLUSIONS: Under the condition of this study, the new heat treatment technique of MT technology could enhance the fatigue fracture resistance of the reciprocating files made of M-wire and Blue-wire.


Assuntos
Temperatura Alta , Preparo de Canal Radicular , Falha de Equipamento , Estresse Mecânico , Instrumentos Odontológicos , Teste de Materiais , Desenho de Equipamento , Titânio
16.
Carbohydr Polym ; 330: 121812, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368083

RESUMO

Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels. Here, we fabricated an injectable nanocomposite hydrogel (CS-NPs@OSA-l-Gtn) stimultaneously possessing excellent autonomous self-healing performance and high mechanical strength by doping chitosan nanoparticles (CS-NPs) into dynamic polymer networks of oxidized sodium alginate (OSA) and gelatin (Gtn) in the presence of borax. The synergistic effect of the multiple reversible interactions combining dynamic covalent bonds (i.e., imine bond and borate ester bond) and noncovalent interactions (i.e., electrostatic interaction and hydrogen bond) provide effective energy dissipation to endure high fatigue resistance and cyclic loading. The dynamic hydrogel exhibited excellent mechanical properties like maximum 2.43 MPa compressive strength, 493.91 % fracture strain, and 89.54 kJ/m3 toughness. Moreover, the integrated hydrogel after injection and self-healing could withstand 150 successive compressive cycles. Besides, the bovine serum albumin embedded in CS-NPs could be sustainably released from the nanocomposite hydrogel for 12 days. This study proposes a novel strategy to synthesize an injectable and self-healing hydrogel combined with excellent mechanical properties for designing high-strength natural carriers with sustained protein delivery.


Assuntos
Alginatos , Quitosana , Alginatos/química , Nanogéis , Gelatina/química , Hidrogéis/química , Polímeros , Quitosana/química
17.
J Clin Med ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337577

RESUMO

(1) Background: The failure of nickel-titanium (NiTi) rotary files is a complication related to endodontic instruments. The aim of this study was to compare the resistance to cyclic fatigue between rotary and reciprocating file systems. (2) Methods: Specific PICO: Population (P): artificial root canals; Interventions (I): instrumentation with NiTi rotary and reciprocating files; Comparison (C): rotary versus reciprocating files; Outcome (O): cyclic fatigue resistance. Studies were identified through bibliographic research using electronic databases (Medline, Embase, Scopus, SciELO, and WOS). The studies were combined using a random effects model by the inverse variance method. The effect size was the mean of the time to fracture (TTF) and number of cycles to fracture (NCF). Heterogeneity was assessed using the p value of the Q test for heterogeneity and the I2. (3) Results: TTF for rotary files was determined in 474.5 s and 839.1 for reciprocating without statistically significant differences. NCF for rotary systems was determined in 1444.2 and for reciprocating file systems in 4155.9 with statistically significant differences (p = 0.035), making reciprocating files more resistant. (4) Conclusions: Reciprocating files have better resistance to cyclic fatigue than rotary files. When tested in double curvature canals, reciprocating files also showed higher resistance.

18.
Adv Mater ; 36(14): e2313177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272488

RESUMO

Anchoring a layer of amorphous hydrogel on an antagonistic elastomer holds potential applications in surface aqueous lubrication. However, the interfacial crack propagation usually occurs under continuous loads for amorphous hydrogel, leading to the failure of hydrogel interface. This work presents a universal strategy to passivate the interfacial cracks by designing a hydrogen bonds-pinned entanglement (Hb-En) structure of amorphous hydrogel on engineering elastomers. The unique Hb-En structure is created by pinning well-tailored entanglements via covalent-like hydrogen bonds, which can amplify the delocalization of interfacial stress concentration and elevate the necessary fracture energy barrier within hydrogel interface. Therefore, the interfacial crack propagation can be suppressed under single and cyclic loads, resulting in a high interfacial toughness over 1650 J m-2 and an excellent interfacial fatigue threshold of 423 J m-2. Such a strategy universally works on blunting the interfacial crack between hydrogel coating and various elastomer materials with arbitrary shapes. The superb fatigue-crack insensitivity at the interface allows for durable aqueous lubrication of hydrogel coating with low friction.

19.
Bioact Mater ; 34: 150-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225944

RESUMO

Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.

20.
Eur J Appl Physiol ; 124(1): 309-315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495864

RESUMO

PURPOSE: To quantify the effects of prolonged cycling on the rate of ventilation ([Formula: see text]), frequency of respiration (FR), and tidal volume (VT) associated with the moderate-to-heavy intensity transition. METHODS: Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-heavy intensity transition, determined as the first ventilatory threshold (VT1), before (PRE) and after (POST) two hours of moderate-intensity cycling. The power output, [Formula: see text], FR, and VT associated with VT1 were determined PRE and POST. RESULTS: As previously reported, power output at VT1 significantly decreased by ~ 10% from PRE to POST. The [Formula: see text] associated with VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13 L.min-1, ∆ - 3 ± 5 L.min-1, ∆ - 4 ± 8%, P = 0.075), and relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The [Formula: see text] associated with VT1 was produced with increased FR (27.6 ± 5.8 vs. 31.9 ± 6.5 breaths.min-1, ∆ 4.3 ± 3.1 breaths.min-1, ∆ 16 ± 11%, P = 0.0002) and decreased VT (2.62 ± 0.43 vs. 2.19 ± 0.36 L.breath-1, ∆ - 0.44 ± 0.22 L.breath-1, ∆ - 16 ± 7%, P = 0.0002) in POST. CONCLUSION: These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, but [Formula: see text] remains stable. Real-time monitoring of [Formula: see text] may be a useful means of assessing proximity to the moderate-to-heavy intensity transition during prolonged exercise and is worthy of further research.


Assuntos
Treino Aeróbico , Exercício Físico , Humanos , Feminino , Respiração , Pulmão , Volume de Ventilação Pulmonar , Teste de Esforço , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...