RESUMO
BACKGROUND: Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS: In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTSâ¢+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION: The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.
Assuntos
Lactobacillales , Sorghum , Lactobacillales/metabolismo , Sorghum/química , Grãos Integrais , Antioxidantes/metabolismo , Grão Comestível/metabolismoRESUMO
Abstract Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste.