Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1396518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872943

RESUMO

Diffusion Magnetic Resonance Imaging tractography is a non-invasive technique that produces a collection of streamlines representing the main white matter bundle trajectories. Methods, such as fiber clustering algorithms, are important in computational neuroscience and have been the basis of several white matter analysis methods and studies. Nevertheless, these clustering methods face the challenge of the absence of ground truth of white matter fibers, making their evaluation difficult. As an alternative solution, we present an innovative brain fiber bundle simulator that uses spline curves for fiber representation. The methodology uses a tubular model for the bundle simulation based on a bundle centroid and five radii along the bundle. The algorithm was tested by simulating 28 Deep White Matter atlas bundles, leading to low inter-bundle distances and high intersection percentages between the original and simulated bundles. To prove the utility of the simulator, we created three whole-brain datasets containing different numbers of fiber bundles to assess the quality performance of QuickBundles and Fast Fiber Clustering algorithms using five clustering metrics. Our results indicate that QuickBundles tends to split less and Fast Fiber Clustering tends to merge less, which is consistent with their expected behavior. The performance of both algorithms decreases when the number of bundles is increased due to higher bundle crossings. Additionally, the two algorithms exhibit robust behavior with input data permutation. To our knowledge, this is the first whole-brain fiber bundle simulator capable of assessing fiber clustering algorithms with realistic data.

2.
Front Neurosci ; 18: 1394681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737100

RESUMO

In recent years, there has been a growing interest in studying the Superficial White Matter (SWM). The SWM consists of short association fibers connecting near giry of the cortex, with a complex organization due to their close relationship with the cortical folding patterns. Therefore, their segmentation from dMRI tractography datasets requires dedicated methodologies to identify the main fiber bundle shape and deal with spurious fibers. This paper presents an enhanced short fiber bundle segmentation based on a SWM bundle atlas and the filtering of noisy fibers. The method was tuned and evaluated over HCP test-retest probabilistic tractography datasets (44 subjects). We propose four fiber bundle filters to remove spurious fibers. Furthermore, we include the identification of the main fiber fascicle to obtain well-defined fiber bundles. First, we identified four main bundle shapes in the SWM atlas, and performed a filter tuning in a subset of 28 subjects. The filter based on the Convex Hull provided the highest similarity between corresponding test-retest fiber bundles. Subsequently, we applied the best filter in the 16 remaining subjects for all atlas bundles, showing that filtered fiber bundles significantly improve test-retest reproducibility indices when removing between ten and twenty percent of the fibers. Additionally, we applied the bundle segmentation with and without filtering to the ABIDE-II database. The fiber bundle filtering allowed us to obtain a higher number of bundles with significant differences in fractional anisotropy, mean diffusivity, and radial diffusivity of Autism Spectrum Disorder patients relative to controls.

3.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375641

RESUMO

A study on the strength of ceramic fiber bundles based on experimental and computational procedures is presented. Tests were performed on single filaments and bundles composed of two fibers with different nominal fiber counts. A method based on fiber rupture signals was developed to estimate the amount of filament rupture during the test. Through this method, the fiber bundle true strength was determined and its variation with the initial fiber count observed. By using different load-sharing models and the single filament data as input parameter, simulations were also developed to verify this behavior. Through different approaches between experiments and simulations, it was noted that the fiber bundle true strength increased with the fiber count. Moreover, a variation of the fibers' final proportion in the bundles relative to the initial amount was verified in both approaches. Finally, discussions on the influence of different load-sharing models on the results are presented.

4.
Front Neuroinform ; 14: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071768

RESUMO

In this article, we present a hybrid method to create fine-grained parcellations of the cortical surface, from a coarse-grained parcellation according to an anatomical atlas, based on cortico-cortical connectivity. The connectivity information is obtained from segmented superficial and deep white matter bundles, according to bundle atlases, instead of the whole tractography. Thus, a direct matching between the fiber bundles and the cortical regions is obtained, avoiding the problem of finding the correspondence of the cortical parcels among subjects. Generating parcels from segmented fiber bundles can provide a good representation of the human brain connectome since they are based on bundle atlases that contain the most reproducible short and long connections found on a population of subjects. The method first processes the tractography of each subject and extracts the bundles of the atlas, based on a segmentation algorithm. Next, the intersection between the fiber bundles and the cortical mesh is calculated, to define the initial and final intersection points of each fiber. A fiber filtering is then applied to eliminate misclassified fibers, based on the anatomical definition of each bundle and the labels of Desikan-Killiany anatomical parcellation. A parcellation algorithm is then performed to create a subdivision of the anatomical regions of the cortex, which is reproducible across subjects. This step resolves the overlapping of the fiber bundle extremities over the cortical mesh within each anatomical region. For the analysis, the density of the connections and the degree of overlapping, is considered and represented with a graph. One of our parcellations, an atlas composed of 160 parcels, achieves a reproducibility across subjects of ≈0.74, based on the average Dice's coefficient between subject's connectivity matrices, rather than ≈0.73 obtained for a macro anatomical parcellation of 150 parcels. Moreover, we compared two of our parcellations with state-of-the-art atlases, finding a degree of similarity with dMRI, functional, anatomical, and multi-modal atlases. The higher similarity was found for our parcellation composed of 185 sub-parcels with another parcellation based on dMRI data from the same database, but created with a different approach, leading to 130 parcels in common based on a Dice's coefficient ≥0.5.

5.
Biomed Eng Online ; 19(1): 42, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493483

RESUMO

BACKGROUND: Diffusion MRI is the preferred non-invasive in vivo modality for the study of brain white matter connections. Tractography datasets contain 3D streamlines that can be analyzed to study the main brain white matter tracts. Fiber clustering methods have been used to automatically group similar fibers into clusters. However, due to inter-subject variability and artifacts, the resulting clusters are difficult to process for finding common connections across subjects, specially for superficial white matter. METHODS: We present an automatic method for labeling of short association bundles on a group of subjects. The method is based on an intra-subject fiber clustering that generates compact fiber clusters. Posteriorly, the clusters are labeled based on the cortical connectivity of the fibers, taking as reference the Desikan-Killiany atlas, and named according to their relative position along one axis. Finally, two different strategies were applied and compared for the labeling of inter-subject bundles: a matching with the Hungarian algorithm, and a well-known fiber clustering algorithm, called QuickBundles. RESULTS: Individual labeling was executed over four subjects, with an execution time of 3.6 min. An inspection of individual labeling based on a distance measure showed good correspondence among the four tested subjects. Two inter-subject labeling were successfully implemented and applied to 20 subjects and compared using a set of distance thresholds, ranging from a conservative value of 10 mm to a moderate value of 21 mm. Hungarian algorithm led to a high correspondence, but low reproducibility for all the thresholds, with 96 s of execution time. QuickBundles led to better correspondence, reproducibility and short execution time of 9 s. Hence, the whole processing for the inter-subject labeling over 20 subjects takes 1.17 h. CONCLUSION: We implemented a method for the automatic labeling of short bundles in individuals, based on an intra-subject clustering and the connectivity of the clusters with the cortex. The labels provide useful information for the visualization and analysis of individual connections, which is very difficult without any additional information. Furthermore, we provide two fast inter-subject bundle labeling methods. The obtained clusters could be used for performing manual or automatic connectivity analysis in individuals or across subjects.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Automação , Análise por Conglomerados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA