Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39336337

RESUMO

In recent years, high-ductility concrete (HDC) has gradually become popular in the construction industry because of its excellent ductility and crack resistance. Concrete itself is a kind of building material with poor tensile properties, and it is necessary to add a large number of steel bars to improve its tensile properties, which increases the construction cost of buildings. However, most of the research studies on high-ductility concrete are scattered. In this paper, the basic mechanical properties of high-ductility concrete and the effects of dry and wet cycles, freeze-thaw cycles, and salt erosion on the durability of high-ductility concrete are obtained by comprehensive analysis. The results show that the tensile properties of HDC can be significantly improved by adding appropriate fiber. When the volume fraction of steel fiber is 2.0%, the splitting tensile strength of concrete is increased by 98.3%. The crack width threshold of concrete chloride erosion is 55-80 µm, and when the crack width threshold is exceeded, the diffusion of CL-1 will be accelerated, and the HDC can control the crack within the threshold, thereby improving the durability of the concrete. Finally, the current research status of high-ductility concrete is analyzed, and the future development of high-ductility concrete is proposed.

2.
Polymers (Basel) ; 15(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139985

RESUMO

This paper focuses on the changes in chemical structure and fiber morphological properties of spruce wood during 15 months of its storage in an open forest woodshed. From the chemical composition, the extractives, cellulose, holocellulose, and lignin content were determined. The pH value was measured on the wood surface using a contact electrode. Acetic and formic acid, saccharides (glucose, xylose, galactose, arabinose and mannose), and polymerization degree (PD) of cellulose were analyzed using the HPLC method. Fiber length and width were determined using a fiber tester analyzer. After 15 months of storage the content of both cellulose (determined by the Seifert method) and lignin did not change; the quantity of hemicelluloses decreased by 13.2%, due to its easier degradation and less stability compared to cellulose; and the pH value dropped by one degree. HPLC analyses showed a total decrease in the cellulose DP of 9.2% and in saccharides of 40.2%, while the largest decreases were recorded in the quantity of arabinose, by 72%, in the quantity of galactose, by 61%, and in the quantity of xylose, by 43%. Organic acids were not detected due to their high volatility during wood storage. The total decrease in average fiber length was 38.2% and in width was 4.8%. An increase in the proportion of shorter fibers, and a decrease in the proportion of longer fibers, was recorded. It can be concluded that fundamental changes occurred in the wood, which could affect the quality of further products (e.g., chips, pulp, paper, particleboards).

3.
Genes (Basel) ; 14(2)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36833400

RESUMO

microRNAs (miRNAs) are involved in the regulation of biological phenomena by down-regulating the expression of mRNAs. In this study, Liaoning cashmere (LC) goats (n = 6) and Ziwuling black (ZB) goats (n = 6) with different cashmere fiber production performances were selected. We supposed that miRNAs are responsible for the cashmere fiber trait differences. To test the hypothesis, the expression profiles of miRNAs from the skin tissue of the two caprine breeds were compared using small RNA sequencing (RNA-seq). A total of 1293 miRNAs were expressed in the caprine skin samples, including 399 known caprine miRNAs, 691 known species-conserved miRNAs, and 203 novel miRNAs. Compared with ZB goats, 112 up-regulated miRNAs, and 32 down-regulated miRNAs were found in LC goats. The target genes of the differentially expressed miRNAs were remarkably concentrated on some terms and pathways associated with cashmere fiber performance, including binding, cell, cellular protein modification process, and Wnt, Notch, and MAPK signaling pathways. The miRNA-mRNA interaction network found that 14 miRNAs selected may contribute to cashmere fiber traits regulation by targeting functional genes associated with hair follicle activities. The results have reinforced others leading to a solid foundation for further investigation of the influences of individual miRNAs on cashmere fiber traits in cashmere goats.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , Cabras/genética , Melhoramento Vegetal , Pele/metabolismo , Folículo Piloso/metabolismo , RNA Mensageiro/genética
4.
Data Brief ; 45: 108618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426085

RESUMO

Natural fibers used as reinforcements or fillers for materials development greatly affect properties and performance of end-use applications. As a consequence of conditioning processes such as grinding and sieving, average fiber length varies significantly. It is thus necessary to estimate the length as statistical data distribution rather than a single mean value. This approach implies length measurement of a significant number of fibers; however, a very high number of data points requires not only long-time frames but also significative amount of work. To address these issues, this article details a facile methodology to measure the length of a large number of natural fibers of oil palm empty fruit bunch (OPEFB) together with a statistical analysis to verify the correspondence between theoretical distributions and experimental data. Moreover, further information related to spectrophotometric, physico-chemical, mechanical, thermal, and morphological characteristics of OPEFB fibers coming from oil palm cultivation in Ecuador are presented. The data will contribute to comprehensively and rigorously describe the overall effects of natural fiber lengths on material properties.

5.
Food Chem X ; 15: 100403, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211758

RESUMO

Apple pomace, the by-product of the cider industry, contains a high content of antioxidant compounds and dietary fiber. Drying would allow its preservation for a later use. The aim of this study was to evaluate the effect of the drying temperature on the drying kinetics, antioxidant properties and the fiber characteristics. For this, drying experiments were performed at different temperatures (40-120 °C). The increase in temperature enhanced the drying rate, as was shown by the effective diffusivity and mass transfer coefficient identified by modelling. The influence of temperature was quantified through the activation energy (38.21 kJ/mol). Regarding the retention of antioxidant properties, the best results were found at 80-100 °C while 40-60 °C was the best temperature range for the fiber characteristics. Therefore, 80 °C could be an adequate temperature for drying of cider apple pomace, as it represents a good balance between kinetics, and antioxidant and fiber properties.

6.
Polymers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160369

RESUMO

Degumming is the most important link in the textile industry. The main purpose of degumming is to effectively remove non-cellulose substances in plant bast fibers. In this research, we propose an electro-Fenton (EF) system with a nickel-foam (Ni-F) cathode in weak acid pH (EF/Ni-F) to degum cannabis fiber in EF while reducing the content of pollutants in degumming wastewater. FT-IR, XPS, XRD, SEM, and TG were employed to thoroughly understand the reaction characteristics to characterize chemical components, element qualities, the crystallinity, and the morphologies of degummed fibers. Additionally, physical and mechanical properties such as breaking strength, elongation at breaking, residual glue rate, whiteness, and diameter of degummed fibers were measured. Through testing, it was found that the fiber degummed by the EF method had higher breaking strength, lower residual tackiness, and higher whiteness than other methods. The antibacterial test was used to detect the effect of fiber on Staphylococcus aureus before and after degumming. EF could remove more colloidal components from cannabis than other methods, and the mechanical properties were also enhanced. The characteristics of the degummed fiber further confirmed the effectiveness of the new degumming method. Moreover, the antibacterial experiment found that the antibacterial property of the degummed fiber was enhanced. The colloidal components in the degumming wastewater were flocculated and precipitated. The upper liquid of the solution had low chromaticity, low COD value, and weak acid pH value, which can meet the discharge requirements. The above test proves that EF is an effective degumming method that is environmentally friendly, takes less time, and enhances antibacterial performance.

7.
Ultrason Sonochem ; 62: 104841, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31806547

RESUMO

The pulp and paper industry is in continuous need for energy-efficient production processes. In the refining process of mechanical pulp, fibrillation is one of the essential unit operations that count for up to 80% of the total energy use. This initial study explores the potential and development of new type of scalable ultrasound reactor for energy efficient mechanical pulping. The developed reactor is of continuous flow type and based on both hydrodynamic and acoustic cavitation in order to modify the mechanical properties of cellulose fibers. A comparison of the prototype tube reactor is made with a batch reactor type where the ultrasonic horn is inserted in the fluid. The pulp samples were sonicated by high-intensity ultrasound, using tuned sonotrodes enhancing the sound pressure and cavitation intensity by a controlled resonance in the contained fluid. The resonant frequency of the batch reactor is 20.8 kHz and for the tube reactor it is 22.8 kHz. The power conversion efficiency for the beaker setup is 25% and 36% in case of the tube reactor in stationary mode. The objective is to verify the benefit of resonance enhanced cavitation intensity when avoiding the effect of Bjerkenes forces. The setup used enables to keep the fibers in the pressure antinodes of the contained fluid. In case of the continuous flow reactor the effect of hydrodynamic cavitation is also induced. The intensity of the ultrasound in both reactors was found to be high enough to produce cavitation in the fluid suspension to enhance the fiber wall treatment. Results show that the mechanical properties of the fibers were changed by the sonification in all tests. The continuous flow type was approximately 50% more efficient than the beaker. The effect of keeping fibers in the antinode of the resonant mode shape of the irradiation frequency was also significant. The effect on fiber properties for the tested mass fraction was determined by a low-intensity ultrasound pulse-echo based measurement method, and by a standard pulp analyzer.

8.
Carbohydr Polym ; 226: 115277, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582081

RESUMO

In order to greatly reduce the viscosity of sodium alginate (SA) gel solution and improve the properties of calcium alginate (CA) fiber, SA/polyethylene glycol acrylate (PEGDA) gel spinning solution with interpenetrating network structure was prepared by using one-pot method firstly. Then the solution was extruded continuously into the coagulation bath. CA/PEGDA composite fiber with double network was prepared by ionic crosslinking SA macromolecules with Ca2+ during the dynamic molding process of solidification, stretch and curl. Rheological results indicated that the spinning solution's apparent viscosity was 92.8% smaller than that of the pure SA solution at PEGDA content of 20 wt%. As the PEGDA content increased, the storage modulus G' and the loss modulus G" both decreased. FTIR results showed that PEGDA content had an obvious influence on hydrogen bond in CA/PEGDA system. The tensile strength of composite fiber reached maximum of 2.91cN/dtex at PEGDA of 10%.

9.
Am J Clin Nutr ; 106(3): 747-754, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28724643

RESUMO

Background: Many intervention studies have tested the effect of dietary fibers (DFs) on appetite-related outcomes, with inconsistent results. However, DFs comprise a wide range of compounds with diverse properties, and the specific contribution of these to appetite control is not well characterized.Objective: The influence of specific DF characteristics [i.e., viscosity, gel-forming capacity, fermentability, or molecular weight (MW)] on appetite-related outcomes was assessed in healthy humans.Design: Controlled human intervention trials that tested the effects of well-characterized DFs on appetite ratings or energy intake were identified from a systematic search of literature. Studies were included only if they reported 1) DF name and origin and 2) data on viscosity, gelling properties, fermentability, or MW of the DF materials or DF-containing matrixes.Results: A high proportion of the potentially relevant literature was excluded because of lack of adequate DF characterization. In total, 49 articles that met these criteria were identified, which reported 90 comparisons of various DFs in foods, beverages, or supplements in acute or sustained-exposure trials. In 51 of the 90 comparisons, the DF-containing material of interest was efficacious for ≥1 appetite-related outcome. Reported differences in material viscosity, MW, or fermentability did not clearly correspond to differences in efficacy, whereas gel-forming DF sources were consistently efficacious (but with very few comparisons).Conclusions: The overall inconsistent relations of DF properties with respect to efficacy may reflect variation in measurement methodology, nature of the DF preparation and matrix, and study designs. Methods of DF characterization, incorporation, and study design are too inconsistent to allow generalized conclusions about the effects of DF properties on appetite and preclude the development of reliable, predictive, structure-function relations. Improved standards for characterization and reporting of DF sources and DF-containing materials are strongly recommended for future studies on the effects of DF on human physiology. This trial was registered at http://www.crd.york.ac.uk/PROSPERO as CRD42015015336.


Assuntos
Apetite/efeitos dos fármacos , Dieta , Fibras na Dieta , Suplementos Nutricionais , Ingestão de Energia/efeitos dos fármacos , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Fermentação , Géis , Humanos , Peso Molecular , Viscosidade
10.
Compr Rev Food Sci Food Saf ; 14(1): 37-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33401810

RESUMO

This paper reviews the physicochemical properties and nutritional significance of inulin fructans (oligofructose and inulin). These compounds are naturally present in a large number of food crops and serve in our diet as dietary fiber. Inulin fructans can be isolated and purified from the chicory root and used as ingredients in a large range of foods to improve structure and/or taste and to increase the intake of dietary fiber. Inulin fructans have a low caloric value, are safe, and generally well tolerated up to a level of 20 g/d. They exert a range of effects, which can be differentiated into direct effects on the gut and the intestinal flora and indirect systemic effects. Direct effects on the gut include prebiotic (bifidogenic) effects, improvement of bowel habits and bowel function in constipated subjects, increased colonic absorption of minerals (Ca and Mg), and secretion of satiety hormones. Indirect effects are on blood lipids, bone mineral content, the immune system, and energy homeostasis. These issues are discussed and it is argued that promising avenues for research are particularly in the areas of energy homeostasis and systemic low-grade inflammation in relation to changes in the composition of the intestinal microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA