Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 813
Filtrar
1.
Int J Clin Oncol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017806

RESUMO

BACKGROUND: In the THOR trial (NCT03390504) Cohort 1, erdafitinib demonstrated significantly prolonged overall survival (OS) (median 12.1 versus 7.8 months) and reduced risk of death by 36% (hazard ratio 0.64, P = 0.005) compared with chemotherapy in metastatic urothelial carcinoma (mUC) patients with FGFR alterations who progressed after ≥ 1 prior treatments, including anti-PD-(L)1. There have been no reports of the Japanese subgroup results yet. METHODS: THOR Cohort 1 randomized patients to erdafitinib once daily or docetaxel/vinflunine once every 3 weeks. Primary endpoint was OS. Secondary endpoints included progression-free survival (PFS) and objective response rate (ORR). No specific statistical power was set for this Japanese subgroup analysis. RESULTS: Of 266 patients randomized, 27 (14 erdafitinib; 13 chemotherapy) were Japanese. Baseline characteristics were generally similar between treatments and to the overall population, except for more males, lower body weight, and more upper tract primary tumors among Japanese patients. Compared with chemotherapy, erdafitinib showed improved OS (median 25.4 versus 12.4 months), PFS (median 8.4 versus 2.9 months) and ORR (57.1% versus 15.4%). Any grade treatment-related adverse events (AEs) occurred in all patients from both arms but Grade 3/4 AEs and AEs leading to discontinuation were lower in the erdafitinib arm. No new safety signals were observed in the Japanese subgroup. CONCLUSION: In the Japanese subgroup, erdafitinib showed improved survival and response compared to chemotherapy, with no new safety concerns. These results support erdafitinib as a treatment option for Japanese mUC patients with FGFR alterations, and early FGFR testing after diagnosis of mUC should be considered.

2.
Front Immunol ; 15: 1390453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962005

RESUMO

Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.


Assuntos
Fatores de Crescimento de Fibroblastos , Macrófagos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Ativação de Macrófagos/imunologia , Inflamação/imunologia , Inflamação/metabolismo
3.
Discov Oncol ; 15(1): 295, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031286

RESUMO

Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.

4.
ESMO Open ; 9(7): 103625, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986210

RESUMO

BACKGROUND: Pemigatinib is an oral, potent, selective fibroblast growth factor receptor (FGFR) 1-3 inhibitor. FIGHT-101, a three-part, open-label, first-in-human, phase I/II study (NCT02393248), evaluated pemigatinib in patients with advanced solid tumors. In parts 1 and 2, pemigatinib monotherapy had a manageable safety profile and antitumor activity in FGFR-altered tumors. Part 3 (pemigatinib combination therapies) results are presented here. PATIENTS AND METHODS: Patients received 9, 13.5, or 20 mg oral once-daily pemigatinib on continuous or intermittent schedules with gemcitabine and cisplatin (pemi/gem/cis), docetaxel (pemi/doc), trastuzumab (pemi/tras), pembrolizumab (pemi/pembro), or retifanlimab (pemi/reti) irrespective of whether the tumor was confirmed as FGFR altered. Primary endpoints were safety and pharmacodynamics. Secondary endpoints were investigator-assessed tumor objective response rates (ORRs) and pharmacokinetics (PK). RESULTS: Of 65 enrolled patients (pemi/gem/cis, n = 8; pemi/doc, n = 7; pemi/tras, n = 6; pemi/pembro, n = 26; pemi/reti, n = 18), all discontinued. Treatment-emergent adverse events (TEAEs) were generally consistent with individual drug AEs. Serious and grade ≥3 TEAEs occurred in 0%-85.7% and 33.3%-100.0% of patients across treatment groups, respectively. All pemigatinib combinations demonstrated steady-state PK comparable to monotherapy. Pharmacodynamic effects in all pemigatinib combinations, except pemi/gem/cis, were consistent with monotherapy. Less inhibition of FGFR2α phosphorylation was observed with this combination. ORRs (95% confidence interval) were 37.5% [8.5% to 75.5% (pemi/gem/cis)], 14.3% [0.4% to 57.9% (pemi/doc)], 0% (pemi/tras), 26.9% [11.6% to 47.8% (pemi/pembro)], and 11.1% [1.4% to 34.7% (pemi/reti)]. All groups had instances of tumor shrinkage. ORRs in assessable patients with FGFR rearrangements and mutations were 50% and 33%, respectively. CONCLUSIONS: Pemigatinib combination therapy showed no unexpected toxicities. PK and pharmacodynamics were mostly consistent with pemigatinib monotherapy. Pemi/gem/cis (37.5%) and pemi/pembro (26.9%) had the highest ORR; most responders had FGFR alterations.

5.
J Cell Mol Med ; 28(14): e18551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054573

RESUMO

Despite numerous investigations on the influence of fibroblast growth factor 23 (FGF23), α-Klotho and FGF receptor-1 (FGFR1) on osteoporosis (OP), there is no clear consensus. Mendelian randomization (MR) analysis was conducted on genome-wide association studies (GWASs)-based datasets to evaluate the causal relationship between FGF23, α-Klotho, FGFR1 and OP. The primary endpoint was the odds ratio (OR) of the inverse-variance weighted (IVW) approach. Furthermore, we stably transfected FGF23-mimic or siRNA-FGF23 into human bone marrow mesenchymal stem cells (hBMSCs) in culture and determined its cell proliferation and the effects on osteogenic differentiation. Using MR analysis, we demonstrated a strong correlation between serum FGF23 levels and Heel- and femoral neck-BMDs, with subsequent ORs of 0.919 (95% CI: 0.860-0.983, p = 0.014) and 0.751 (95% CI: 0.587-0.962; p = 0.023), respectively. The expression levels of FGF23 were significantly increased in femoral neck of patients with OP than in the control cohort (p < 0.0001). Based on our in vitro investigation, after overexpression of FGF23, compared to the control group, the BMSC's proliferation ability decreased, the expression level of key osteogenic differentiation genes (RUNX2, OCN and OSX) significantly reduced, mineralized nodules and ALP activity significantly decreased. After silencing FGF23, it showed a completely opposite trend. Augmented FGF23 levels are causally associated with increased risk of OP. Similarly, FGF23 overexpression strongly inhibits the osteogenic differentiation of hBMSCs, thereby potentially aggravating the pathological process of OP.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Humanos , Fator de Crescimento de Fibroblastos 23/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Proliferação de Células/genética , Diferenciação Celular/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Klotho/metabolismo , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Densidade Óssea/genética , Masculino , Pessoa de Meia-Idade , Colo do Fêmur/metabolismo , Colo do Fêmur/patologia
6.
Liver Int ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829010

RESUMO

BACKGROUND: Over recent years, there has been a notable rise in the incidence of intrahepatic cholangiocarcinoma (iCCA), which presents a significant challenge in treatment due to its complex disease characteristics and prognosis. Notably, the identification of fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement, a potential oncogenic driver primarily observed in iCCA, raises questions about its impact on the prognostic outcomes of patients undergoing surgical intervention or other therapeutic approaches. METHODS: A comprehensive search from inception to July 2023 was conducted across PubMed, Embase, Web of Science, and the Cochrane Library databases. The objective was to identify relevant publications comparing the prognosis of FGFR2 alterations and no FGFR2 alterations groups among patients with iCCA undergoing surgical resection or other systemic therapies. The primary outcome indicators, specifically Overall Survival (OS) and Disease-Free Survival (DFS), were estimated using Hazard Ratios (HRs) with 95% confidence intervals (CIs), and statistical significance was defined as p < .05. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Statistical analyses were performed using Review Manager 5.4 software and Stata, version 12.0. RESULTS: Six studies, involving 1314 patients (FGFR2 alterations group n = 173 and no FGFR2 alterations group n = 1141), were included in the meta-analysis. The analysis revealed that the FGFR2 alterations group exhibited a significantly better OS prognosis compared to the no FGFR2 alterations group, with a fixed-effects combined effect size HR = 1.31, 95%CI = 1.001-1.715, p = .049. Furthermore, meta-regression and subgroup analysis showed that the length of the follow-up period did not introduce heterogeneity into the results. This finding indicates the stability and reliability of the study outcomes. CONCLUSION: The current study provides compelling evidence that FGFR2 alterations are frequently associated with improved survival outcomes for patients with iCCA undergoing surgical resection or other systemic treatments. Additionally, the study suggests that FGFR2 holds promise as a safe and dependable therapeutic target for managing metastatic, locally advanced or unresectable iCCA. This study offers a novel perspective in the realm of targeted therapy for iCCA, presenting a new and innovative approach to its treatment.

8.
Front Oncol ; 14: 1399356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854731

RESUMO

We report a case of slipped capital femoral epiphysis (SCFE), an on target skeletal toxicity of a pan-FGFR TKI inhibitor, erdafitinib. A 13-year-old boy was diagnosed to have an optic pathway/hypothalamic glioma with signs of increased intracranial pressure and obstructive hydrocephalus requiring placement of ventriculo-peritoneal (VP) shunt. Sequencing of the tumor showed FGFR1-tyrosine kinase domain internal tandem duplication (FGFR1-KD-ITD). He developed hypothalamic obesity with rapid weight gain and BMI >30. At 12 weeks of treatment with erdafitinib, he developed persistent knee pain. X-ray of the right hip showed SCFE. Erdafitinib was discontinued, and he underwent surgical pinning of the right hip. MRI at discontinuation of erdafitinib showed a 30% decrease in the size of the tumor, which has remained stable at 6 months follow-up. Our experience and literature review suggest that pediatric patients who are treated with pan-FGFR TKIs should be regularly monitored for skeletal side effects.

9.
Heliyon ; 10(11): e30887, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841436

RESUMO

Fibroblast growth factors and their receptors (FGFR) have major roles in both human growth and oncogenesis. In adults, therapeutic FGFR inhibitors have been successful against tumors that carry somatic FGFR mutations. In pediatric patients, trials testing these anti-tumor FGFR inhibitor therapeutics are underway, with several recent reports suggesting modest positive responses. Herein, we report an unforeseen outcome in a pre-pubescent child with an FGFR1-mutated glioma who was successfully treated with FDA-approved erdafitinib, a pan-FGFR inhibitor approved for treatment of Bladder tumors. While on treatment with erdafitinib, the patient experienced rapid skeletal and long bone overgrowth resulting in kyphoscoliosis, reminiscent of patients with congenital loss-of-function FGFR3 mutations. We utilized normal dermal fibroblast cells established from the patient as a surrogate model to demonstrate that insulin-like growth factor 1 (IGF-1), a factor important for developmental growth of bones and tissues, can activate the PI3K/AKT pathway in erdafitinib-treated cells but not the MAPK/ERK pathway. The IGF-I-activated PI3K/AKT signaling rescued normal fibroblasts from the cytotoxic effects of erdafitinib by promoting cell survival. We, therefore, postulate that IGF-I-activated P13K/AKT signaling likely continues to promote bone elongation in the growing child, but not in adults, treated with therapeutic pan-FGFR inhibitors. Importantly, since activated MAPK signaling counters bone elongation, we further postulate that prolonged blockage of the MAPK pathway with pan-FGFR inhibitors, together with actions of growth-promoting factors including IGF-1, could explain the abnormal skeletal and axial growth suffered by our pre-pubertal patient during systemic therapeutic use of pan-FGFR inhibitors. Further studies to find more targeted, and/or appropriate dosing, of pan-FGFR inhibitor therapeutics for children are essential to avoid unexpected off-target effects as was observed in our young patient.

10.
Mil Med Res ; 11(1): 40, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902808

RESUMO

Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.


Assuntos
Fatores de Crescimento de Fibroblastos , Osteoartrite , Transdução de Sinais , Humanos , Fatores de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Osteoartrite/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Degeneração do Disco Intervertebral/fisiopatologia , Osteoporose/fisiopatologia , Osteoporose/etiologia , Sarcopenia/fisiopatologia , Envelhecimento/fisiologia , Animais
11.
ESMO Open ; 9(6): 103488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838500

RESUMO

BACKGROUND: Fibroblast growth factor receptor 2 (FGFR2) fusions and rearrangements are clinically actionable genomic alterations in cholangiocarcinoma (CCA). Pemigatinib is a selective, potent, oral inhibitor of FGFR1-3 and demonstrated efficacy in patients with previously treated, advanced/metastatic CCA with FGFR2 alterations in FIGHT-202 (NCT02924376). We report final outcomes from the extended follow-up period. PATIENTS AND METHODS: The multicenter, open-label, single-arm, phase II FIGHT-202 study enrolled patients ≥18 years old with previously treated advanced/metastatic CCA with FGFR2 fusions or rearrangements (cohort A), other FGF/FGFR alterations (cohort B), or no FGF/FGFR alterations (cohort C). Patients received once-daily oral pemigatinib 13.5 mg in 21-day cycles (2 weeks on, 1 week off) until disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR) in cohort A assessed as per RECIST v1.1 by an independent review committee; secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: FIGHT-202 enrolled 147 patients (cohort A, 108; cohort B, 20; cohort C, 17; unconfirmed FGF/FGFR alterations, 2). By final analysis, 145 (98.6%) had discontinued treatment due to progressive disease (71.4%), withdrawal by patient (8.2%), or adverse events (AEs; 6.8%). Median follow-up was 45.4 months. The ORR in cohort A was 37.0% (95% confidence interval 27.9% to 46.9%); complete and partial responses were observed in 3 and 37 patients, respectively. Median DOR was 9.1 (6.0-14.5) months; median PFS and OS were 7.0 (6.1-10.5) months and 17.5 (14.4-22.9) months, respectively. The most common treatment-emergent AEs (TEAEs) were hyperphosphatemia (58.5%), alopecia (49.7%), and diarrhea (47.6%). Overall, 15 (10.2%) patients experienced TEAEs leading to pemigatinib discontinuation; intestinal obstruction and acute kidney injury (n = 2 each) occurred most frequently. CONCLUSIONS: Pemigatinib demonstrated durable response and prolonged OS with manageable AEs in patients with previously treated, advanced/metastatic CCA with FGFR2 alterations in the extended follow-up period of FIGHT-202.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Pirimidinas , Humanos , Colangiocarcinoma/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Neoplasias dos Ductos Biliares/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Idoso de 80 Anos ou mais , Morfolinas , Pirróis
12.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726894

RESUMO

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Assuntos
Calgranulina A , Calgranulina B , Fator de Crescimento de Fibroblastos 23 , Fatores de Transcrição NFATC , Regulação para Cima , Animais , Masculino , Camundongos , Calcineurina/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23/metabolismo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais
13.
World J Hepatol ; 16(4): 490-493, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38689741

RESUMO

Cancer immunotherapy is administered for first-line, second-line, neoadjuvant, or adjuvant treatment of advanced, metastatic, and recurrent cancer in the liver, gastrointestinal tract, and genitourinary tract, and other solid tumors. Erdafitinib is a fibroblast growth factor receptor (FGFR) inhibitor, and it is an adenosine triphosphate competitive inhibitor of FGFR1, FGFR2, FGFR3, and FGFR4. Immune checkpoint inhibitors are monoclonal antibodies that block programmed cell death protein 1 (PD-1) and its ligand that exert intrinsic antitumor mechanisms. The promising results of first-line treatment of advanced and metastatic urothelial carcinoma with PD-1 blockades with single or combined agents, indicate a new concept in the treatment of advanced, metastatic, and recurrent hepatic and gastrointestinal carcinomas. Cancer immunotherapy as first-line treatment will improve overall survival and provide better quality of life. Debate is arising as to whether to apply the cancer immunotherapy as first-line treatment in invasive carcinomas, or as second-line treatment in recurrent or metastatic carcinoma following the standard chemotherapy. The literature in the field is not definite, and so far, there has been no consensus on the best approach in this situation. At present, as it is described in this editorial, the decision is applied on a case-by-case basis.

14.
Anim Cells Syst (Seoul) ; 28(1): 216-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770056

RESUMO

Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To devise more effective treatments for GBM, genetic characteristics must be considered in addition to pre-existing treatments. We performed an integrative analysis with heterogeneous GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. We found that poor prognosis was induced by co-upregulation of heat shock protein family A member 5 (HSPA5) and fibroblast growth factor receptor 1 (FGFR1). Co-up regulation of these two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. Furthermore, we found this newly discovered subtype was correlated with homologous recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies for combination therapy.

15.
Pharmacol Res ; 205: 107230, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788820

RESUMO

Immune checkpoint inhibitors (ICIs) are essential for urothelial carcinoma (UC) treatment. Fibroblast growth factor receptor (FGFR) alterations, as common oncogenic drivers in UC, have been reported to drive T cell depletion of UC immune microenvironment via up-regulating FGFR signaling, which indicated FGFR alterations potentially result in reduced response to ICIs. In addition, the selective pan-FGFR inhibitor showed better clinical benefit in clinical trials, indicating FGFR has emerged as critical therapeutic target via inhibiting FGFR signaling. The present study aims to evaluate prognosis and response to ICIs between FGFR-altered UC patients and FGFR-wildtype UC patients via 1963 UC patients and offers new insights into personalized precision therapy and combination therapy for UC.


Assuntos
Inibidores de Checkpoint Imunológico , Receptores de Fatores de Crescimento de Fibroblastos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/imunologia , Prognóstico , Feminino , Masculino , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/imunologia
16.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821585

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Ensaios Antitumorais Modelo de Xenoenxerto , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Animais , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Camundongos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Administração Oral , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Células NIH 3T3 , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores
17.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638139

RESUMO

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Assuntos
Furina , Insulina , Furina/genética , Filogenia , Insulina/genética , Transcriptoma , Cisteína , Leucina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Tirosina
18.
J Biomol Struct Dyn ; : 1-10, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669200

RESUMO

The discovery of novel therapeutic agents with potent anticancer activity remains a critical challenge in drug development. Natural products, particularly bioactive phytoconstituents derived from plants, have emerged as promising sources for anticancer drug discovery. In this study, we used virtual screening techniques to explore the potential of bioactive phytoconstituents as inhibitors of fibroblast growth factor receptor 1 (FGFR1), a key signaling protein implicated in cancer progression. We used virtual screening techniques to analyze phytoconstituents extracted from the IMPPAT 2.0 database. Our primary objective was to discover promising inhibitors of FGFR1. To ensure the selection of promising candidates, we initially filtered the molecules based on their physicochemical properties. Subsequently, we performed binding affinity calculations, PAINS, ADMET, and PASS filters to identify nontoxic and highly effective hits. Through this screening process, one phytocompound, namely Mundulone, emerged as a potential lead. This compound demonstrated an appreciable affinity for FGFR1 and exhibited specific interactions with the ATP-binding site residues. To gain further insights into the conformational dynamics of Mundulone and the reference FGFR1 inhibitor, Lenvatinib, we conducted time-evolution analyses employing 200 ns molecular dynamics simulations (MDS) and essential dynamics. These analyses provided valuable information regarding the dynamic behavior and stability of the compounds in complexes with FGFR1. Overall, the findings indicate that Mundulone exhibits promising binding affinity, specific interactions, and favorable drug profiles, making it a promising lead candidate. Further experimental analysis will be necessary to confirm its effectiveness and safety profiles for therapeutic advancement in the cancer field.Communicated by Ramaswamy H. Sarma.

19.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572102

RESUMO

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

20.
J Clin Med ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592174

RESUMO

Background: Mutations of fibroblast growth factor receptor 3 (FGFR3) are associated with urothelial carcinoma (UC) oncogenesis and are considered an important therapeutic target. Therefore, we evaluated the FGFR3 mutation rate and its clinical significance in urothelial carcinoma (UC) using next-generation sequencing. Methods: A total of 123 patients with UC who were treated at Chonnam National University Hospital (Gwang-ju, Korea) from January 2018 to December 2020 were enrolled. We performed NGS using the Oncomine panel with tumor specimens and blood samples corresponding to each specimen. We analyzed the FGFR3 mutation results according to the type of UC and the effects on early recurrence and progression. Results: The mean age of the patients was 71.39 ± 9.33 years, and 103 patients (83.7%) were male. Overall, the FGFR3 mutation rate was 30.1% (37 patients). The FGFR3 mutation rate was the highest in the non-muscle-invasive bladder cancer (NMIBC) group (45.1%), followed by the muscle-invasive bladder cancer (22.7%) and upper tract UC (UTUC) (14.3%) groups. Patients with FGFR3 mutations had a significantly lower disease stage (p = 0.019) but a high-risk of NMIBC (p < 0.001). Conclusions: Our results revealed that FGFR3 mutations were more prevalent in patients with NMIBC and lower stage UC and associated with a high-risk of NMIBC. Large multicenter studies are needed to clarify the clinical significance of FGFR3 mutations in UC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...