Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Front Cardiovasc Med ; 11: 1365008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966751

RESUMO

Introduction: Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results: MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion: In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.

2.
J Am Heart Assoc ; : e033232, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958128

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS: One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS: Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.

3.
Biochem J ; 481(13): 865-881, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958472

RESUMO

Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.


Assuntos
Filaminas , Processamento de Proteína Pós-Traducional , Filaminas/metabolismo , Humanos , Animais , Fosforilação , Neoplasias/metabolismo
4.
Curr Issues Mol Biol ; 46(4): 3408-3423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38666944

RESUMO

Despite ongoing research in the field of breast cancer, the morbidity rates indicate that the disease remains a significant challenge. While patients with primary tumors have relatively high survival rates, these chances significantly decrease once metastasis begins. Thus, exploring alternative approaches, such as targeting proteins overexpressed in malignancies, remains significant. Filamin A (FLNa), an actin-binding protein (ABP), is involved in various cellular processes, including cell migration, adhesion, proliferation, and DNA repair. Overexpression of the protein was confirmed in samples from patients with numerous oncological diseases such as prostate, lung, gastric, colorectal, and pancreatic cancer, as well as breast cancer. Although most researchers concur on its role in promoting breast cancer progression and aggressiveness, discrepancies exist among studies. Moreover, the precise mechanisms through which FLNa affects cell migration, invasion, and even cancer progression remain unclear, highlighting the need for further research. To evaluate FLNa's potential as a therapeutic target, we have summarized its roles in breast cancer.

5.
Steroids ; 205: 109380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311094

RESUMO

Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Filaminas/genética
6.
J Pharm Pharmacol ; 76(4): 354-367, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38330446

RESUMO

OBJECTIVES: Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells. METHODS: After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A. RESULTS: GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy. CONCLUSION: GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.


Assuntos
Antineoplásicos , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Ácidos Heptanoicos , Lanosterol , Neoplasias Pulmonares , MicroRNAs , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Citocromo P-450 CYP1A1/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácidos Heptanoicos/farmacologia , Ácidos Heptanoicos/uso terapêutico , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , RNA Circular/efeitos dos fármacos , RNA Circular/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/efeitos dos fármacos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
7.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224333

RESUMO

Somatostatin receptors (SSTs) are widely expressed in pituitary tumors and neuroendocrine neoplasms (NENs) of different origins, i.e. the gastrointestinal tract and the thorax (lungs and thymus), thus representing a well-established target for medical treatment with SST ligands (SRLs). However, the response to SRLs is highly heterogeneous between tumors. Two main factors can contribute to this variability: (i) the differential SST expression among tumor types and (ii) the differential expression/modulation of the SST-related intracellular machinery. In this literature review, we provide an overview of available data on the variable expression of SSTs in pituitary tumors and NENs, together with the resulting clinical implications. Moreover, we aim to describe the complex intracellular machinery involved in SST signaling and trafficking. Particularly, we will focus on ß-arrestins and describe their role in receptor internalization and recycling, as well as the various functions of these scaffold molecules in tumor pathogenesis and progression. This review highlights the interplay between membrane receptors and intracellular machinery, together with its role in determining the clinical behavior of the tumor and the response to treatment in patients with pituitary tumors or NENs.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico
8.
Cancer Biomark ; 39(2): 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37955081

RESUMO

BACKGROUND: Long-chain noncoding RNA (lncRNA), LINC01569, is important for regulating the extracellular matrix, which affects cell migration. However, its involvement in the occurrence and development of triple-negative breast cancer (TNBC) remains unclear. OBJECTIVE: This study is aimed to investigate the role of LINC01569 on TNBC. METHODS: Online database was used for clinical data analysis. Cell viability and migration capability were monitored using cell counting kit-8 and transwell assays, respectively. Luciferase reporter assay and RNA pull-down were used to confirm the binding capability between noncoding RNAs and filamin A-interacting protein 1-like (FILIP1L). Western blotting was used to determine the protein content. RESULTS: Compared with normal breast tissue, LINC01569 was significantly reduced in patients with TNBC subtype, and LINC01569 expression gradually decreased with the progression of tumor stage. Patients with TNBC with high lncRNA LINC01569 levels had a better prognosis than did patients with low LINC01569 levels. LINC01569 overexpression inhibited the migration capability, whereas siRNA-mediated LINC01569 downregulation promoted the migration capability in TNBC cells. Using ENCORI and lncRNA SNP online databases, miR-300 was screened as the potential sponge of LINC01569. The binding of LINC01569 to miR-300 was confirmed using the dual-luciferase reporter and RNA pull-down assays. miR-300 was negatively correlated with LINC01569, and miR-300 mimics eliminated the anti-proliferation and anti-migration effects of LINC01569 on TNBC cells. Additionally, FILIP1L was further verified as the downstream target of miR-300. miR-300 mimics blocked LINC01569 upregulation-mediated elevation of FILIP1L. Importantly, the anti-tumor effects mediated by LINC01569 overexpression were abolished by miR-300 mimics and further restored by FILIP1L upregulation. CONCLUSIONS: LINC01569 was expressed at a low level in TNBC and could sponge miR-300 to promote FILIP1L expression, reducing the proliferation and metastasis capability of TNBC. Thus, LINC01569 might be a useful biomarker in the diagnosis and prognosis of metastatic TNBC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Filaminas/genética , Luciferases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855268

RESUMO

Due to the current limited knowledge about the role of filamin A (FLNA) in pituitary tumour progression, we aimed to analyse FLNA expression levels and its impact on aggressive markers of pituitary neuroendocrine tumours (PitNETs), using an integrative approach of in vivo and in vitro models and human samples. An increase in the expression levels of FLNA was observed in the advanced tumoural stages of the hyperplastic adenomatous pituitary model, concomitant with a decrease in cell proliferation and with a modification in the subcellular localisation of this protein. Similarly, overexpression of FLNA in the somatolactotropic GH3 cell line induced a decrease in the cell proliferation, promoted a migratory phenotype, increased invasion activity, and decreased the prolactin secretion. Cyclin D1 (CCND1) and cyclin-dependent kinase 4 (CDK4) expression increased in both models in correlation with the increase observed in FLNA levels. When human tissues were analysed a significant increase of FLNA was observed in PitNETs compared to normal pituitary gland, with heterogeneous intracellular localisation. Higher levels of FLNA expression were observed in tumours with invasive characteristics. These results underline the crucial roles of FLNA as a modulator of pathological markers and as a potential prognostic marker in pituitary tumours.


Assuntos
Adenoma , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/metabolismo , Filaminas/genética , Filaminas/metabolismo , Hipófise/metabolismo
10.
J Clin Med ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068501

RESUMO

Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.

11.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068896

RESUMO

The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.


Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Carcinoma Adrenocortical , Filaminas , Humanos , Neoplasias do Córtex Suprarrenal/diagnóstico , Adenoma Adrenocortical/diagnóstico , Carcinoma Adrenocortical/diagnóstico , Filaminas/genética , Filaminas/metabolismo , Transdução de Sinais , Prognóstico
12.
Cureus ; 15(9): e45858, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37881376

RESUMO

Filamin A is a protein essential for cytoskeleton production, encoded by the X-lined dominantly inherited FLNA gene. A deficiency in filamin A can lead to cardiac valvular dysplasia and periventricular nodular heterotopia in the brain. Notably, periventricular heterotopia Type 1 has associations with cardiovascular abnormalities. We report the case of a 40-year-old woman who visited the emergency department due to shortness of breath, intermittent desaturation, and vertigo. Initial diagnostic procedures unexpectedly identified a sinus of Valsalva aneurysm on a computed tomography scan of the thorax and MRI brain revealed subependymal nodules in the lateral ventricles, suggesting an FLNA mutation. Multimodal cardiac imaging, including transesophageal echocardiogram, confirmed the aortic root aneurysm diagnosis. Consequently, the patient underwent prophylactic aortic resection and valve replacement surgery. This case underscores the importance of multidisciplinary teamwork in diagnosing and devising a comprehensive treatment plan. Cardiovascular screening for patients with known filamin A function loss might be advantageous. Similarly, genetic testing for family members could help anticipate the disease's progression and suggest prophylactic interventions like aortic root resection.

13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 876-885, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879916

RESUMO

In resting platelets, the 17 th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563 rd phenylalanine (PHE 563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.


Assuntos
Simulação de Dinâmica Molecular , Complexo Glicoproteico GPIb-IX de Plaquetas , Filaminas/análise , Filaminas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/análise , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligantes , Ligação Proteica , Plaquetas/química , Plaquetas/metabolismo , Fator de von Willebrand/análise , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
14.
DNA Cell Biol ; 42(10): 638-644, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37851024

RESUMO

Developmental dysplasia of the hip (DDH), characterized by acetabular deformity that manifests from loose ligaments to complete dislocation of the hip, can cause notable pain and dysfunction and lead to hip dislocation, secondary fractures, scoliosis, and osteoarthritis of hip. Variants in FLNA may produce a spectrum of malformations in multiple organs, especially the skeleton. This study aimed to identify the genetic etiologies of DDH patients and provide genetic testing information for further diagnosis and treatment of DDH. We recruited a Chinese woman with DDH and her family members. Whole-exome sequencing was used to identify the patient's genetic etiologies. Protein models were used to analyze the pathogenic mechanism of the identified variants. A novel variant (c.3493T>G, p.C1165G) of FLNA was detected. The structural models of the mutant FLNA protein indicated that the variant would lose its sulfhydryl side chain and destroy the attraction between benzene rings and sulfhydryl. We reported a novel variant (c.3493T>G, p.C1165G) of FLNA in a Chinese woman with DDH. Our research outcome enriches the gene pool for hip dysplasia and emphasizes the pathogenicity of sulfhydryl side chain disruption in FLNA.


Assuntos
Displasia do Desenvolvimento do Quadril , Luxação Congênita de Quadril , Feminino , Humanos , Benzeno , Displasia do Desenvolvimento do Quadril/complicações , Displasia do Desenvolvimento do Quadril/genética , Filaminas/genética , Testes Genéticos , Luxação Congênita de Quadril/genética , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/diagnóstico , Estudos Retrospectivos
15.
J Thromb Haemost ; 21(12): 3619-3632, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37678551

RESUMO

BACKGROUND: Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins ß1 and ß3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES: Here we investigated the role of PACSIN2 in platelet function. METHODS: Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin ß1. RESULTS: Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin ß1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2ß1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin ß1. By contrast, Pacsin2-/- platelets had normal integrin αIIbß3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin ß1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin ß7, a model for integrin ß-subunits. CONCLUSIONS: Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin ß1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin ß1 hemostatic function.


Assuntos
Integrina beta1 , Ativação Plaquetária , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Hemostasia , Hemostáticos/metabolismo , Integrina beta1/metabolismo , Peptídeos/farmacologia , Adesividade Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Trombose/metabolismo
16.
Environ Sci Pollut Res Int ; 30(49): 107703-107715, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740811

RESUMO

Prolonged exposure to arsenic can cause nonalcoholic steatohepatitis (NASH). The NOD-like receptor protein 3 (NLRP3) inflammasome plays an essential role in the process of NASH. However, the mechanism by which arsenic promotes NLRP3 expression remains unclear. Three-month NaAsO2 gavage led to the nuclear factor-κB (NF-κB) signaling pathway activation and NASH. Additionally, NaAsO2 upregulated the level of Filamin A (FLNA) and pyroptosis, thereby activating the NLRP3 inflammasome in SD rat liver. Using FLNA siRNA, NASH-associated inflammation and pyroptosis were clearly mitigated by reducing activation of the NLRP3 inflammasome. Furthermore, arsenic treatment facilitated activation of the NF-κB signaling pathway and promoted p-p65 translocation into the nucleus. Chromatin immunoprecipitation (Ch-IP) assay indicated that FLNA promoted p65 binding to the NLRP3 gene and upregulated the transcription of NLRP3, ultimately leading to pyroptosis and NASH. Our findings indicate that FLNA and pyroptosis are strongly associated with NASH induced by NaAsO2. Collectively, the findings of this study indicated that FLNA mediates NF-κB signaling pathway-induced activation of the NLRP3 inflammasome and ultimately activates pyroptosis and NASH upon NaAsO2 exposure. This information may be useful for improving therapeutic strategies against arsenic-induced NASH.


Assuntos
Arsênio , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Inflamassomos/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Proteínas NLR , Filaminas , Ratos Sprague-Dawley
17.
Bioinformation ; 19(1): 99-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720273

RESUMO

It is of interest to document the molecular docking analysis of protein Filamin-A with thioazo compounds. The compounds 1, 3, 5, and 6 showed best molecular docking interaction as compared to the drug doxorubicin. Among the selected ligands (1-6), compound 3 shows better interaction score than doxorubicin and follows Lipinski's rule of five. Hence, it could be considered as a potential lead molecule for inhibiting protein filamin A in the treatment of oral cancer.

18.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446373

RESUMO

Moyamoya angiopathy (MMA) is an uncommon cerebrovascular disease characterized by a progressive steno-occlusive lesion of the internal carotid artery and the compensatory development of an unstable network of collateral vessels. These vascular hallmarks are responsible for recurrent ischemic/hemorrhagic strokes. Surgical treatment represents the preferred procedure for MMA patients, and indirect revascularization may induce a spontaneous angiogenesis between the brain surface and dura mater (DM), whose function remains rather unknown. A better understanding of MMA pathogenesis is expected from the molecular characterization of DM. We performed a comprehensive, label-free, quantitative mass spectrometry-based proteomic characterization of DM. The 30 most abundant identified proteins were located in the extracellular region or exosomes and were involved in extracellular matrix organization. Gene ontology analysis revealed that most proteins were involved in binding functions and hydrolase activity. Among the 30 most abundant proteins, Filamin A is particularly relevant because considering its well-known biochemical functions and molecular features, it could be a possible second hit gene with a potential role in MMA pathogenesis. The current explorative study could pave the way for further analyses aimed at better understanding such uncommon and disabling intracranial vasculopathy.


Assuntos
Transtornos Cerebrovasculares , Doença de Moyamoya , Humanos , Proteoma , Proteômica , Doença de Moyamoya/genética , Transtornos Cerebrovasculares/complicações , Dura-Máter
19.
J Cell Mol Med ; 27(15): 2228-2238, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415307

RESUMO

Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.


Assuntos
Síndrome de Down , Trombocitopenia , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Síndrome de Down/metabolismo , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Hemorragia/metabolismo , Trombocitopenia/metabolismo , Quinases Dyrk
20.
Front Aging ; 4: 1175601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457922

RESUMO

Introduction: Implicated in both aging and Alzheimer's disease (AD), mammalian target of rapamycin (mTOR) is overactive in AD brain and lymphocytes. Stimulated by growth factors such as insulin, mTOR monitors cell health and nutrient needs. A small molecule oral drug candidate for AD, simufilam targets an altered conformation of the scaffolding protein filamin A (FLNA) found in AD brain and lymphocytes that induces aberrant FLNA interactions leading to AD neuropathology. Simufilam restores FLNA's normal shape to disrupt its AD-associated protein interactions. Methods: We measured mTOR and its response to insulin in lymphocytes of AD patients before and after oral simufilam compared to healthy control lymphocytes. Results: mTOR was overactive and its response to insulin reduced in lymphocytes from AD versus healthy control subjects, illustrating another aspect of insulin resistance in AD. After oral simufilam, lymphocytes showed normalized basal mTOR activity and improved insulin-evoked mTOR activation in mTOR complex 1, complex 2, and upstream and downstream signaling components (Akt, p70S6K and phosphorylated Rictor). Suggesting mechanism, we showed that FLNA interacts with the insulin receptor until dissociation by insulin, but this linkage was elevated and its dissociation impaired in AD lymphocytes. Simufilam improved the insulin-mediated dissociation. Additionally, FLNA's interaction with Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), a negative regulator of mTOR, was reduced in AD lymphocytes and improved by simufilam. Discussion: Reducing mTOR's basal overactivity and its resistance to insulin represents another mechanism of simufilam to counteract aging and AD pathology. Simufilam is currently in Phase 3 clinical trials for AD dementia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...