Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38995337

RESUMO

Microorganisms can play a key role in selenium (Se) bioremediation and the fabrication of Se-based nanomaterials by reducing toxic forms (Se(VI) and Se(IV)) into Se(0). In recent years, omics have become a useful tool in understanding the metabolic pathways involved in the reduction process. This paper aims to elucidate the specific molecular mechanisms involved in Se(VI) reduction by the bacterium Stenotrophomonas bentonitica. Both cytoplasmic and membrane fractions were able to reduce Se(VI) to Se(0) nanoparticles (NPs) with different morphologies (nanospheres and nanorods) and allotropes (amorphous, monoclinic, and trigonal). Proteomic analyses indicated an adaptive response against Se(VI) through the alteration of several metabolic pathways including those related to energy acquisition, synthesis of proteins and nucleic acids, and transport systems. Whilst the thioredoxin system and the Painter reactions were identified to play a crucial role in Se reduction, flagellin may also be involved in the allotropic transformation of Se. These findings suggest a multi-modal reduction mechanism is involved, providing new insights for developing novel strategies in bioremediation and nanoparticle synthesis for the recovery of critical materials within the concept of circular economy.

2.
Curr Biol ; 34(13): 2932-2947.e7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38897200

RESUMO

Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.


Assuntos
Flagelina , Flagelina/metabolismo , Flagelina/genética , Glicosilação , Shewanella/metabolismo , Shewanella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/genética , Evolução Molecular
3.
J Immunol Methods ; 531: 113701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852836

RESUMO

Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.


Assuntos
Anticorpos Antibacterianos , Flagelos , Flagelina , Soros Imunes , Microscopia de Vídeo , Pseudomonas aeruginosa , Flagelina/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Soros Imunes/imunologia , Anticorpos Antibacterianos/imunologia , Flagelos/imunologia , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia
4.
Pathogens ; 13(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787254

RESUMO

Triple-negative breast cancer (TNBC) in humans is the most aggressive and deadly form of BC. Although TNBCs are about 15 percent of the total number of BC cases, they are associated with the highest mortalities. Current treatment options are limited, and most modalities are toxic and have not increased the 5-year survival rates of TNBC. Many oncolytic viruses are emerging as potential therapies for TNBC. In this study, two Tanapoxvirus (TPV) recombinants, one expressing FliC and the other expressing mouse interleukin-2 (mIL-2), were assessed for their efficacy in an immuno-competent xenograft mouse model. MDA-MB-231 tumors were planted in BALB/c nude mice, treated, made immuno-competent via adoptive transfer of splenocytes from healthy BALB/c donors, and then monitored for 40 days. TPV/Δ2L/66R/FliC and TPV/Δ66R/mIL-2 demonstrated significant tumor reduction (p = 0.01602 and p = 0.03890, respectively) compared to the reconstituted control (RC), whereas wtTPV did not. Pathological analyses of treated tumors revealed cells consistent with lymphocyte and plasma cell morphology in reconstituted mice treated with TPV recombinants. Anti-viral plaque reduction assays conducted using harvested serum from treated animals indicated the presence of anti-TPV antibodies in mice reconstituted and treated with TPV that were missing from immune-deficient nude mice, including those exposed to TPV and of statistically equivalent serum concentrations to normal BALB/c mice immunized against TPV. The results suggest immuno-deficient BALB/c nude mice can become immuno-competent via adoptive transfer of splenocytes from genetically identical donors and allow for testing of tumor xenografts in a competent model system. The TPV recombinants tested should be further studied for the potential treatment of human TNBC.

5.
J Agric Food Chem ; 72(22): 12673-12684, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772747

RESUMO

Biogenic selenium nanoparticles (SeNPs) are the most favorable Se form for nutritional supplementation due to their high stability, low toxicity, and high activity. However, the interaction between the surface-binding proteins and their stable biogenic SeNPs, as well as their impact on the stability and bioavailability of SeNPs, remains to be understood. In vitro stabilization experiments revealed an amino acid segment (F(235-386)) in Rahnella aquatilis' flagellin FliC, with surfactant-like properties, stabilizing SeNPs under harsh conditions. FliC and F(235-386) were employed as stabilizers to synthesize SeNPs (FliC@SeNPs and F(235-386)@SeNPs), and surface chemistry analysis revealed coordination reactions between the proteins and Se atoms on the surface of SeNPs. Both FliC and F(235-386) enhanced SeNPs uptake in wheat seedlings but reduced it in bacteria and yeast. This study highlights FliC's core function in stabilizing SeNPs and enhancing their bioavailability, paving the way for agricultural and nutritional applications.


Assuntos
Disponibilidade Biológica , Flagelina , Nanopartículas , Selênio , Tensoativos , Selênio/química , Selênio/metabolismo , Flagelina/química , Flagelina/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Nanopartículas/química , Triticum/química , Triticum/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
J Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716762

RESUMO

Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin improves the treatment of primary pneumonia or superinfection caused by amoxicillin-sensitive or -resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and -resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. Finally, we developed a mathematical model that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.

7.
Microb Ecol ; 87(1): 65, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695873

RESUMO

Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.


Assuntos
Aeromonas hydrophila , Flagelina , Transcriptoma , Flagelina/genética , Aeromonas hydrophila/genética , Aeromonas hydrophila/fisiologia , Filogeografia , Adaptação Fisiológica/genética , Filogenia , Biofilmes/crescimento & desenvolvimento
8.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584060

RESUMO

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Flagelina/metabolismo , Proteínas da Membrana Bacteriana Externa , Peptídeos/metabolismo , Células Dendríticas , Vacinas Bacterianas
9.
Pathogens ; 13(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668231

RESUMO

Chlamydia abortus is the etiological agent of abortion and fetal loss in sheep, goats and bovine cattle in many countries. Even though commercially available vaccines can reduce the incidence in sheep, the development of new, safe, and effective vaccines remains high on the agenda. In this study, an evaluation was made of the efficacy of a vaccine candidate, an inactivated antigen based on the extract of outer membrane proteins of a C. abortus strain known as Chlamydia VNITIBP-21, in combination with recombinant flagellin as an adjuvant. Pregnant sheep (n = 43) were divided into three groups: an experimental vaccinated group, a control infected group and a control non-infected group. The sheep were vaccinated twice, with an interval of 3 weeks, then infected with the homologous virulent strain of Chlamydia abortus on pregnancy day 75. The vaccine candidate reduced C. abortus shedding in vaginal swabs considerably, in comparison with the control group. In addition, ewes in the experimental group experienced no abortions, while those in the control group experienced instances of abortion, as well as births of weak and nonviable lambs. The findings show that the vaccine candidate proved itself to be promising in combatting the agent of ovine abortion and fetal loss.

10.
Arch Microbiol ; 206(5): 221, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637410

RESUMO

Bacterial flagellin is a potent immunomodulatory agent. Previously, we successfully obtained flagellin from Escherichia coli Nissle 1917 (FliCEcN) and constructed two mutants with varying degrees of deletion in its highly variable regions (HVRs). We found that there was a difference in immune stimulation levels between the two mutants, with the mutant lacking the D2-D3 domain pair of FliCEcN having a better adjuvant effect. Therefore, this study further analyzed the structural characteristics of the aforementioned FliCEcN and its two mutants and measured their levels of Caco-2 cell stimulation to explore the impact of different domains in the HVRs of FliCEcN on its structure and immune efficacy. This study utilized AlphaFold2, SERS (Surface-enhanced Raman spectroscopy), and CD (circular dichroism) techniques to analyze the structural characteristics of FliCEcN and its mutants, FliCΔ174-506 and FliCΔ274-406, and tested their immune effects by stimulating Caco-2 cells in vitro. The results indicate that the D2 and D3 domains of FliCEcN have more complex interactions compared to the D1-D2 domain pair., and these domains also play a role in molecular docking with TLR5 (Toll-like receptor 5). Furthermore, FliCΔ274-406 has more missing side chain and characteristic amino acid peaks than FliCΔ174-506. The FliCEcN group was found to stimulate higher levels of IL-10 (interleukin 10) secretion, while the FliCΔ174-506 and FliCΔ274-406 groups had higher levels of IL-6 (interleukin 6) and TNF-α (tumor necrosis factor-α) secretion. In summary, the deletion of different domains in the HVRs of FliCEcN affects its structural characteristics, its interaction with TLR5, and the secretion of immune factors by Caco-2 cells.


Assuntos
Escherichia coli , Receptor 5 Toll-Like , Humanos , Escherichia coli/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/química , Flagelina/genética , Células CACO-2 , Simulação de Acoplamento Molecular
11.
Biochemistry (Mosc) ; 89(3): 574-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648774

RESUMO

Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.


Assuntos
Adjuvantes Imunológicos , Flagelina , Vacina Antirrábica , Raiva , Vacinas de Produtos Inativados , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Animais , Flagelina/imunologia , Camundongos , Raiva/prevenção & controle , Raiva/imunologia , Vacinas de Produtos Inativados/imunologia , Cães , Vírus da Raiva/imunologia , Salmonella typhimurium/imunologia , Feminino , Gatos
12.
Mol Ther Oncol ; 32(1): 200770, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596299

RESUMO

Cancer immunotherapy based on bioengineering of bacteria can effectively increase anticancer immune responses. However, few studies have investigated the antitumor potential of engineering Proteus mirabilis. Here, we genetically engineered P. mirabilis to overexpress Vibrio vulnificus flagellin B (FlaB) protein in a murine CT26 tumor model. We found that a large number of FlaB-expressing P. mirabilis colonized tumor tissues, enhanced T cell infiltration and secretion of cytokines and cytotoxic proteins in tumors, and significantly restrained tumor growth. Our results also showed that programmed death ligand 1 (PD-L1) expression in tumor-infiltrating immune cells was elevated after treatment with FlaB-expressing P. mirabilis. In addition, combination therapy with FlaB-expressing P. mirabilis and PD-L1 blockade synergistically improved antitumor efficacy by enhancing infiltration of CD8+ cells. Furthermore, serum liver biochemical indices of mice increased in the short term in both the P. mirabilis and the FlaB-expressing P. mirabilis treatment groups but gradually recovered in the later stage of treatment so that FlaB protein expression did not increase the toxicity of P. mirabilis in vivo. Taken together, our results suggest that P. mirabilis could serve as an engineered bacterium for bacterium-based cancer immunotherapy.

13.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513665

RESUMO

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Assuntos
Interleucina-23 , Periodontite , Humanos , Células Epiteliais , Inflamação , Receptor 5 Toll-Like/metabolismo
14.
Antimicrob Agents Chemother ; 68(5): e0136123, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526073

RESUMO

The increasing prevalence of multidrug-resistant Pseudomonas aeruginosa (PA) is a significant concern for chronic respiratory disease exacerbations. Host-directed drugs, such as flagellin, an agonist of toll-like receptor 5 (TLR5), have emerged as a promising solution. In this study, we evaluated the prophylactic intranasal administration of flagellin against a multidrug-resistant strain of PA (PAMDR) in mice and assessed the possible synergy with the antibiotic gentamicin (GNT). The results indicated that flagellin treatment before infection decreased bacterial load in the lungs, likely due to an increase in neutrophil recruitment, and reduced signs of inflammation, including proinflammatory cytokines. The combination of flagellin and GNT showed a synergistic effect, decreasing even more the bacterial load and increasing mice survival rates, in comparison to mice pre-treated only with flagellin. These findings suggest that preventive nasal administration of flagellin could restore the effect of GNT against MDR strains of PA, paving the way for the use of flagellin in vulnerable patients with chronic respiratory diseases.


Assuntos
Administração Intranasal , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Flagelina , Gentamicinas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Gentamicinas/farmacologia , Animais , Flagelina/farmacologia , Camundongos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Feminino , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Receptor 5 Toll-Like/agonistas , Carga Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico
15.
Front Immunol ; 15: 1348305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464539

RESUMO

Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade , Humanos , Adjuvantes Imunológicos/uso terapêutico , Alérgenos , Hidróxido de Alumínio , Adjuvantes Farmacêuticos
16.
Infect Immun ; 92(3): e0042723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391207

RESUMO

To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.


Assuntos
Flagelina , Pseudomonas aeruginosa , Camundongos , Animais , Flagelina/metabolismo , Anticorpos , Klebsiella pneumoniae , Polissacarídeos , Flagelos/metabolismo , Soros Imunes
17.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38400123

RESUMO

Vaccinations can serve as an important preventive measure against the porcine epidemic diarrhea (PED) virus that currently threatens the swine industry. This study focuses on the development of a fusion protein vaccine, FliC99-mCOE, which combines the N-terminus of flagellin (FliC99) with a modified core neutralizing epitope (mCOE) of PEDV. In silico immunoinformatic analysis confirmed the construct's non-toxic, non-allergenic, and highly antigenic nature. Molecular docking and molecular dynamics (MD) simulations demonstrated FliC99-mCOE's strong binding to the TLR-5 immunological receptor. Repeated exposure simulations and immunological simulations suggested enhanced cell-mediated immunity. Both FliC99-mCOE and an inactivated PEDV vaccine were produced and tested in mice. The results from cell proliferation, ELISA, and neutralization assays indicated that FliC99-mCOE effectively stimulated cellular immunity and neutralized PEDV. We conclude that the FliC99-mCOE fusion protein may serve as a promising vaccine candidate against PEDV.

18.
Poult Sci ; 103(4): 103474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387285

RESUMO

Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein, and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 d postvaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Flagelina , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Sorogrupo , Anticorpos Antivirais , Galinhas , Aviadenovirus/genética , Adenoviridae/genética , Proteínas Recombinantes/genética , Peptídeos , Células Dendríticas
19.
J Vet Sci ; 25(1): e4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311319

RESUMO

BACKGROUND: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. OBJECTIVES: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. METHODS: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. RESULTS: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. CONCLUSIONS: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.


Assuntos
Lawsonia (Bactéria) , Doenças dos Roedores , Doenças dos Suínos , Vacinas , Camundongos , Animais , Suínos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Salmonella typhimurium , Camundongos Endogâmicos BALB C , Doenças dos Suínos/prevenção & controle
20.
Artigo em Inglês | MEDLINE | ID: mdl-38376540

RESUMO

The growing challenge of antibiotic resistance necessitates novel approaches for combating bacterial infections. This study explores the distinctive synergy between chlorhexidine, an antiseptic and disinfectant agent, and azithromycin, a macrolide antibiotic, in their impact on bacterial growth and virulence factors using Escherichia coli strain Crooks (ATCC 8739) as a model. Our findings reveal that the chlorhexidine and azithromycin combination demonstrates enhanced anti-bacterial effects compared to individual treatments. Intriguingly, the combination induced oxidative stress, decreased flagellin expression, impaired bacterial motility, and enhanced bacterial autoaggregation. Notably, the combined treatment also demonstrated a substantial reduction in bacterial adherence to colon epithelial cells and downregulated NF-κB in the epithelial cells. In conclusion, these results shed light on the potential of the chlorhexidine and azithromycin synergy as a compelling strategy to address the rising challenge of antibiotic resistance and may pave the way for innovative therapeutic interventions in tackling bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...