Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
J Agric Food Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960914

RESUMO

Flow-injection spin-trapping electron paramagnetic resonance (FI-EPR) methods that involve the use of 5,5-dimethyl-pyrroline-N-oxide (DMPO) as a spin-trapping reagent have been developed for the kinetic study of the O2•- radical scavenging reactions occurring in the presence of various plant-derived and synthetic phenolic antioxidants (Aox), such as flavonoid, pyrogallol, catechol, hydroquinone, resorcinol, and phenol derivatives in aqueous media (pH 7.4 at 25 °C). The systematically estimated second-order rate constants (ks) of these phenolic compounds span a wide range (from 4.5 × 10 to 1.0 × 106 M-1 s-1). The semilogarithm plots presenting the relationship between ks values and oxidation peak potential (Ep) values of phenolic Aox are divided into three groups (A1, A2, and B). The ks-Ep plots of phenolic Aox bearing two or three OH moieties, such as pyrogallol, catechol, and hydroquinone derivatives, belonged to Groups A1 and A2. These molecules are potent O2•- radical scavengers with ks values above 3.8 × 104 (M-1 s-1). The ks-Ep plots of all phenol and resorcinol derivatives, and a few catechol and hydroquinone derivatives containing carboxyl groups adjacent to the OH groups, were categorized into the group poor scavengers (ks < 1.6 × 103 M-1 s-1). The ks values of each group correlated negatively with Ep values, supporting the hypothesis that the O2•- radical scavenging reaction proceeds via one-electron and two-proton processes. The processes were accompanied by the production of hydrogen peroxide at pH 7.4. Furthermore, the correlation between the plots of ks and the OH proton dissociation constant (pKa•) of the intermediate aroxyl radicals (ks-pKa• plots) revealed that the second proton transfer process could potentially be the rate-determining step of the O2•- radical scavenging reaction of phenolic compounds. The ks-Ep plots provide practical information to predict the O2•- radical scavenging activity of plant-derived phenolic compounds based on those molecular structures.

2.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893397

RESUMO

A specific feature of mushrooms (including those of the genus Pleurotus) is their natural ability to absorb and accumulate many chemical substances present in their immediate environment, which makes them an excellent natural sorption material. Hence, fruiting bodies of mushrooms have been recognized for years as excellent indicators of the environment, reflecting its current state. Nevertheless, mushrooms can accumulate both health-promoting substances, such as bioelements, and toxic substances, such as heavy metals and organic compounds, including bisphenol A® (BPA). This organic chemical compound in the phenol group, although it has been withdrawn in the EU since 2010, is widely present in the environment around us. In the present experiment, we aimed to determine the effect of adding BPA to liquid media for in vitro cultures of Pleurotus spp. The biomass increases were determined. Moreover, the degrees of adsorption and desorption of BPA from the obtained freeze-dried biomass in two different environments (neutral and acidic) were determined as a function of time. This is the first study to determine the bioavailability of adsorbed BPA in obtained biomass by extracting the mycelium into artificial digestive juices in a model digestive system. BPA was added to the liquid Oddoux medium in the following amounts: 0.01, 0.5, and 0.5 g/250 mL of medium. The amounts of adsorbed and desorbed BPA were determined by flow injection analysis (FIA) with amperometric detection. The addition of BPA to the substrate reduced the biomass growth in each of the discussed cases. BPA adsorption by the mycelium occurred at over 90% and depended on the morphology of the mushroom (structure, surface development, and pore size). BPA desorption depended on the pH of the environment and the desorption time. Mushrooms are an excellent natural remedial material, but BPA is extracted into artificial digestive juices; therefore, consuming mushrooms from industrialized areas may have health consequences for our bodies.


Assuntos
Compostos Benzidrílicos , Biomassa , Fenóis , Pleurotus , Fenóis/química , Fenóis/metabolismo , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crescimento & desenvolvimento , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Adsorção , Análise de Injeção de Fluxo
3.
Eur J Radiol Open ; 12: 100571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859979

RESUMO

Purpose: The patient safety of iodine contrast-enhanced pulmonary artery CT angiography (CTPA) is widely concerned. This study aimed to investigate the image quality and immediate patient safety of spectral CTPA using a lower-contrast dose pre-dual-flow injection method. Methods: This retrospective study included 120 patients with suspected pulmonary embolisms who received spectral CTPA between February and December 2022. Patients were divided into normal contrast injection (Group A, n=60) and pre-dual-flow group (Group B, n=60). CT values of pulmonary arteries (PAs) at different levels, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), arteriovenous separation performance, and beam hardening artifact (BHA) index of two sets of images were measured or calculated. The subjective image quality and immediate patient safety were also scored using the three-point method. Results: Group B had a contrast dose reduction by 42.5 % (60 vs. 34.5 mL). Radiation exposure dose was not statistically different between the two groups (P>0.05). CT values of different-level PAs on group B images were higher than those on group A images (P<0.05). Group B images had higher SNR and CNR, better arteriovenous separation between PA trunk and pulmonary vein, and lower BHA index on soft tissue and PA (all P<0.05). For subjective evaluation of image quality, group B had a better score in beam hardening artifact (P<0.05). For immediate patient safety, the score in comfortability was statistically higher in group B, with P<0.05. Conclusions: Comparing with the normal injection method, pre-dual-flow spectral CTPA with a lower contrast dose injected results in better image quality and shows potential in patient-safety promotion.

4.
J Vasc Access ; : 11297298241258625, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855976

RESUMO

BACKGROUND: Confirmation of adequate peripheral intravenous catheter placement is essential before using venous catheters. The color flow injection test has been reported as a method with high sensitivity and specificity for this purpose. The technique involves administrating saline through the peripheral venous route to observe changes in the color flow pattern around the same vein at a more central location. However, the required volume of saline remains uncertain. This study aims to determine the appropriate dosage for conducting the test in pediatric patients and explore any potential correlations between dosage and patient characteristics. METHODS: A prospective study was conducted in children under 6 years of age with American Society of Anesthesiologists Physical Status 1-2 presenting for general anesthesia. After an intravenous cannula was placed in the forearm under general anesthesia, normal saline was injected at a speed of approximately 1 mL/s while the axillary artery and vein were observed with color flow Doppler imaging. The volume of normal saline required to induce a change in the color flow pattern around the vessels was measured. Measurements were performed twice and averaged for comparison with patient characteristics and other factors. RESULTS: The study cohort included 30 patients aged from 0.3 to 5.5 (2.6 ± 1.6) years. The change in color flow Doppler imaging was noted in all the patients, and the average volume was 1.40 ± 0.36 mL (95% confidence interval (CI), 1.27-1.54; p < 0.001), which was significantly correlated with age, with a correlation coefficient of 0.435 (95% CI, 0.09-0.69; p = 0.02). CONCLUSIONS: The required volume for the color flow injection test is small; therefore, the test is easy to perform and minimally invasive in pediatric patients.

5.
Talanta ; 277: 126336, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823326

RESUMO

This study presents a modified screen-printed carbon electrode (SPCE) to determine glucose in a custom-built flow injection system. The biosensor was constructed by immobilizing glucose oxidase on porous platinum nanoparticles decorated on multi-walled carbon nanotubes (GOx@PPtNPs@MWCTNs). The fabrication of the biosensor was completed by coating the GOx@PPtNPs@MWCTNs nanocomposite on an SPCE modified with a nanocomposite of poly(3,4-ethylenedioxythiophene) and Prussian blue (GOx@PPtNPs@MWCTNs/PEDOT@PB/SPCE). The fabricated electrode accurately measured hydrogen peroxide (H2O2), the byproduct of the GOx-catalyzed oxidation of glucose, and was then applied as a glucose biosensor. The glucose response was amperometrically determined from the PB-mediated reduction of H2O2 at an applied potential of -0.10 V in a flow injection system. Under optimal conditions, the developed biosensor produced a linear range from 2.50 µM to 1.250 mM, a limit of detection of 2.50 µM, operational stability over 500 sample injections, and good selectivity. The proposed biosensor determined glucose in human plasma samples, achieving recoveries and results that agreed with the hexokinase-spectrophotometric method (P > 0.05). Combining the proposed biosensor with the custom-built sample feed, a portable potentiostat and a smartphone, enabled on-site glucose monitoring.

6.
Talanta ; 276: 126183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754184

RESUMO

The silicate (Si) molybdenum blue method was modified by combining oxalate and ascorbic acid into a single reagent and was used for determining Si in sea water samples. The first step of this automated assay protocol was designed to perform either a calibration by a single Si standard prepared in deionized (DI) water, or to dilute samples in the range of 0-160 µM Si to fit into 0-20 µM Si calibration range using a 20 cm flow cell. By designing the assay protocol to function in batch mode, the influence of salinity on calibration was eliminated, thus making the method suitable for analysis of samples collected in the open ocean, coastal areas, or rivers. Reproducibility and accuracy of this method were evaluated by analysis of certified sea water reference materials. Phosphate (P) does not interfere significantly if the Si:P ratio is 4:1 or larger. The limit of detection was 514 nM Si, r.s.d. 2.1 %, sampling frequency 40 s/h, reagent consumption 700 µL/sample, and using deionized water as the carrier solution.

7.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728027

RESUMO

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Lipidômica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipidômica/métodos , Lipídeos/análise , Lipídeos/química , Ácidos Graxos/análise , Ácidos Graxos/química , Linho/química , Verduras/química , Espectrometria de Massas/métodos , Triglicerídeos/análise , Triglicerídeos/química
8.
J Fluoresc ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780834

RESUMO

Carmoisine dye, a red azo food colorant commonly utilized to impart a red color to synthetic food products, is the subject of this study. Here, we present a novel reversed flow injection analysis with a chemiluminescence detection (FIA-CL) method employing a newly developed homemade flow cell to determine carmoisine dye. This developed method is based on the inhibition effect of the dye on the chemiluminescence light (CL) emission generated from a luminal-hypochlorite system, whereby the reduction in CL intensity correlates directly with the concentration of carmoisine dye. Investigations into various analytical parameters were conducted to enhance method efficiency and applicability. A linear calibration graph of 4.0 to 100.0 µg mL-1 was established (R² = 0.9993), with a detection limit of LOD = 2.93 µg mL-1. Subsequent application of the proposed method to analyze gelatine dessert samples yielded results in reasonable agreement with those obtained using the reported HPLC method, as evidenced by student t-test and F-test analyses.

9.
Bioelectrochemistry ; 158: 108725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714062

RESUMO

An enzymatic amperometric uric acid (UA) biosensor was successfully developed by modifying a screen-printed carbon electrode (SPCE) with Prussian blue-poly(3,4-ethylene dioxythiophene) polystyrene sulfonate composite (PB-PEDOT:PSS). The modified SPCE was coated with gold nanoparticles-graphene oxide-chitosan composite cryogel (AuNPs-GO-CS cry). Uricase (UOx) was directly immobilized via chemisorption on AuNPs. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical characterization of the modified electrode was performed by cyclic voltammetry and electrochemical impedance spectroscopy. UA was determined using amperometric detection based on the reduction current of PB which was correlated with the amount of H2O2 produced during the enzymatic reaction. Under optimal conditions, the fabricated UA biosensor in a flow injection analysis (FIA) system produced a linear range from 5.0 to 300 µmol L-1 with a detection limit of 1.88 µmol L-1. The proposed sensor was stable for up to 221 cycles of detection and analysis was rapid (2 min), with good reproducibility (RSDs < 2.90 %, n = 6), negligible interferences, and recoveries from 94.0 ± 3.9 to 101.1 ± 2.6 %. The results of UA detection in blood plasma were in agreement with the enzymatic colorimetric method (P > 0.05).


Assuntos
Técnicas Biossensoriais , Criogéis , Eletrodos , Ouro , Grafite , Limite de Detecção , Nanopartículas Metálicas , Ácido Úrico , Técnicas Biossensoriais/métodos , Ácido Úrico/sangue , Ácido Úrico/análise , Ouro/química , Grafite/química , Criogéis/química , Nanopartículas Metálicas/química , Carbono/química , Polímeros/química , Porosidade , Análise de Injeção de Fluxo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Quitosana/química , Poliestirenos/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Urato Oxidase/química , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Ferrocianetos/química
10.
Food Chem ; 453: 139678, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759439

RESUMO

Converting solid iron oxide nanoparticles into a "pseudo-water-soluble" form before applying them to chemiluminescent reactions leads to enhance the chemiluminescence intensity. Using 8-hydroxyquinoline as a colloidal agent, a new, fast, and simple method of synthesizing pseudo-water-soluble Fe2O3 nanoparticles was developed. SEM, VSM, SAED, HRTEM, XRD, FTIR, and EDS techniques were used to characterize the synthesized Fe2O3 nanoparticles. Fe2O3 nanoparticles synthesized in this study have superior peroxidase-like activity (POD-like) and are stable under a wide range of pH and temperature. The chemiluminescence reaction of luminol-H2O2 is intensified and accelerated by a colloidal solution of Fe-nanoparticles/8-hydroxyquinoline. Reverse-flow injection analysis was employed to determine brilliant blue. A chemiluminescent sensing method based on iron oxide nanozymes was utilized for sensitive detection of the brilliant blue synthetic dye, achieving a limit of detection of 0.06 mg/L and a dynamic linear range of 0.1 to 50 mg/L. The recovery and relative standard deviations of real samples were found to be 97.83-99.93% and 0.09-3.07%, respectively. An analysis of a sample, from injection to obtaining the maximum peak, could be performed in less than one minute.


Assuntos
Benzenossulfonatos , Bebidas , Compostos Férricos , Gelatina , Medições Luminescentes , Compostos Férricos/química , Catálise , Medições Luminescentes/métodos , Gelatina/química , Bebidas/análise , Benzenossulfonatos/química , Luminescência
11.
Anal Chim Acta ; 1302: 342516, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580411

RESUMO

Conventional plate electrodes were commonly used in electrochemical flow injection analysis and only part of molecules diffused to the plane of electrodes could be detected, which would limit the performance of electrochemical detection. In this study, a low-cost native stainless steel wire mesh (SSWM) electrode was integrated into a 3D-printed device for electrochemical flow injection analysis with a pass-through mode, which is different compared with previous flow-through mode. This strategy was applied for sensitive analysis of hydrogen peroxide (H2O2) released from cells. Under the optimal conditions (the applied potentials, the flow rate and the sample volume), the device exhibits high sensitivity toward H2O2. Linear relationships could be achieved between electrochemical responses and the concentration of H2O2 ranging from 1 nM to 1 mM. The excellent analytical performance of the SSWM-based device could be attributed to the pass-through mode based on the mesh microstructure and intrinsic catalytic properties for H2O2 by stainless steel. This approach could be further successfully extended for screening of H2O2 released from HeLa cells with electrochemical responses linear to the number of cells in a range of 3 - 1.35 × 104 cells with an injection volume of 30 µL. This study revealed the potential of mesh electrodes in electrochemical flow injection analysis for cellular function and pathology and its possible extension in cell counting and on-line analysis.


Assuntos
Análise de Injeção de Fluxo , Peróxido de Hidrogênio , Humanos , Células HeLa , Peróxido de Hidrogênio/análise , Aço Inoxidável , Técnicas Eletroquímicas , Eletrodos
12.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667154

RESUMO

We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.


Assuntos
Técnicas Biossensoriais , Compostos Ferrosos , Glucose , Grafite , Metalocenos , Polietilenoimina , Grafite/química , Metalocenos/química , Compostos Ferrosos/química , Polietilenoimina/química , Glucose/análise , Eletrodos , Oxirredução
13.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676187

RESUMO

Bisphenol A (BPA) has been classified as an endocrine-disrupting substance that may cause adverse effects on human health and the environment. The development of simple and sensitive electrochemical biosensors is crucial for the rapid and effective quantitative determination of BPA. This work presents a study on electrochemical sensors utilizing gold nanoparticle-modified multi-walled carbon nanotubes (CNT/AuNPs). Glassy carbon electrodes (GCEs) and screen-printed electrodes (SPEs) were conveniently modified and used for BPA detection. AuNPs were electrodeposited onto the CNT-modified electrodes using the galvanostatic method. The electrodes were properly modified and characterized by using Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance analysis (EIS). The electrochemical response of the sensors was studied using differential pulse voltammetry (DPV) and constant potential amperometry (CPA) for modified GCE and SPE electrodes, respectively, and the main analytical parameters were studied and optimized. Problems encountered with the use of GCEs, such as sensor degradation and high limit of detection (LOD), were overcome by using modified SPEs and a flow injection device for the measurements. Under this approach, an LOD as low as 5 nM (S/N = 3) was achieved and presented a linear range up to 20 µM. Finally, our investigation addressed interference, reproducibility, and reusability aspects, successfully identifying BPA in both spiked and authentic samples, including commercial and tap waters. These findings underscore the practical applicability of our method for accurate BPA detection in real-world scenarios. Notably, the integration of SPEs and a flow injection device facilitated simplified automation, offering an exceptionally efficient and reliable solution for precise BPA detection in water analysis laboratories.

14.
Talanta ; 275: 125963, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643712

RESUMO

This work introduces an innovative gold-leaf flow cell for electrochemical detection in flow injection (FI) analysis. The flow cell incorporates a hammered custom gold leaf electrochemical sensor. Hammered gold leaves consist of pure gold and are readily available in Thailand at affordable prices (approximately $0.085 for a sheet measuring 40 mm × 40 mm). Four sensing devices can be made from a single sheet of this gold leaf, resulting in a production cost of approximately $0.19 per sensor. Each electrochemical sensor has the gold leaf as the working electrode, together with a printed carbon strip, and a printed silver/silver chloride strip as the counter and reference electrodes, respectively. Initial investigations using cyclic voltammetry of a standard 1000 µmol L⁻1 iodide solution in 60 mmol L⁻1 phosphate buffer (PB) solution at pH 5, demonstrated performance comparable to that of a commercial screen-printed gold electrode. The hammered gold leaf electrode was then installed in a commercial flow cell as part of an FI system. A sample or standard iodide solution (100 µL) is injected into the first carrier stream of phosphate buffer (PB) solution, which then merges to mix with the second stream of the same buffer solution before flowing into the flow cell for amperometric detection of iodide. The optimized operating conditions include a fixed potential of +0.39 V (vs Ag/AgCl), and a total flow rate of 3 mL min⁻1. A linear calibration is obtained in the concentration range of 1 to 1000 µmol L⁻1 I- with a typical equation of µA = (0.00299 ± 0.00004) × (µmol L-1 I-) + (0.021 ± 0.020), and R2 = 0.9994. Analysis of iodide using this gold leaf-FI system is rapid with sample throughput of 86 samples h⁻1 and %RSD of a sample of 100 µmol L⁻1 I⁻ of 1.2 (n = 29). The limit of detection, (calculated as 2.78 × SD of regression line/slope), is 27 µmol L⁻1 I-. This method was successfully applied to determine iodide in nuclear emergency tablets.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Iodetos , Comprimidos , Iodetos/análise , Ouro/química , Comprimidos/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Análise de Injeção de Fluxo/métodos , Limite de Detecção
15.
Anal Sci ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643336

RESUMO

This study introduces a novel microfluidic polymer chip system that employs an embedded anionic surfactant (AS) ion-selective fluorescence optode (AS fluorescence optode) as a detector for measuring AS. The AS fluorescent optode comprises a lactone form of rhodamine B (L-RB) embedded in 2-nitrophenyl octyl ether plasticized poly (vinyl chloride) membrane. The AS fluorescence optode demonstrated a linear correlation between fluorescence intensity peak heights and AS concentrations within the range of less than 20 µM under optimal flow conditions. The limit of detection for AS was approximately 0.06 µM. The microfluidic system was utilized to measure AS levels in environmental samples, such as river water and tap water.

16.
Mikrochim Acta ; 191(4): 197, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483622

RESUMO

A fully reusable electrochemical device is proposed for the first time made from laser cutting and a homemade conductive ink composed of carbon and nail polish. As a sensor substrate, we applied polymethyl methacrylate, which allows the surface to be renewed by simply removing and reapplying a new layer of ink. In addition to the ease of renewing the sensor's conductive surface, the design of the device has allowed for the integration of different forms of analysis. The determination of L-Dopa was performed using DPV, which presented a linear response range between 5.0 and 1000.0 µmol L-1, and a LOD of 0.11 µmol L-1. For dopamine, a flow injection analysis system was employed, and using the amperometric technique measurements were performed with a linear ranging from 2.0 to 100.0 µmol L-1 and a LOD of 0.26 µmol L-1. To demonstrate its applicability, the device was used in the quantification of analytes in pharmaceutical drug and synthetic urine samples.


Assuntos
Grafite , Levodopa , Levodopa/análise , Dopamina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Reprodutibilidade dos Testes
17.
Mikrochim Acta ; 191(4): 175, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436786

RESUMO

Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for  15 repetitive  injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.


Assuntos
Técnicas Biossensoriais , Zearalenona , Imunoensaio , Luminescência , Limite de Detecção
18.
ACS Sens ; 9(3): 1033-1048, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38363106

RESUMO

Sensing systems necessitate automation to reduce human effort, increase reproducibility, and enable remote sensing. In this perspective, we highlight different types of sensing systems with elements of automation, which are based on flow injection and sequential injection analysis, microfluidics, robotics, and other prototypes addressing specific real-world problems. Finally, we discuss the role of computer technology in sensing systems. Automated flow injection and sequential injection techniques offer precise and efficient sample handling and dependable outcomes. They enable continuous analysis of numerous samples, boosting throughput, and saving time and resources. They enhance safety by minimizing contact with hazardous chemicals. Microfluidic systems are enhanced by automation to enable precise control of parameters and increase of analysis speed. Robotic sampling and sample preparation platforms excel in precise execution of intricate, repetitive tasks such as sample handling, dilution, and transfer. These platforms enhance efficiency by multitasking, use minimal sample volumes, and they seamlessly integrate with analytical instruments. Other sensor prototypes utilize mechanical devices and computer technology to address real-world issues, offering efficient, accurate, and economical real-time solutions for analyte identification and quantification in remote areas. Computer technology is crucial in modern sensing systems, enabling data acquisition, signal processing, real-time analysis, and data storage. Machine learning and artificial intelligence enhance predictions from the sensor data, supporting the Internet of Things with efficient data management.


Assuntos
Inteligência Artificial , Robótica , Humanos , Reprodutibilidade dos Testes , Automação , Microfluídica/métodos
19.
J Sep Sci ; 47(3): e2300696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356232

RESUMO

Although filtration is one of the most common steps in sample preparation for chemical analysis, filter membrane materials can leach contaminants and/or retain some analytes in the filtered solutions. In multiclass, multiresidue analysis of veterinary drugs, it is challenging to find one type of filter membrane that does not retain at least some of the analytes before injection in ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In this study, different filter membranes were tested for use in UHPLC-MS/MS analysis of 183 diverse drugs in bovine muscle, kidney, and liver tissues. Membranes evaluated consisted of polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), polyethersulfone, nylon, and regenerated cellulose. Drug classes represented among the analytes included ß-agonists, ß-lactams, anthelmintics, macrolides, tetracyclines, sulfonamides, tranquilizers, (fluoro)quinolones, anti-inflammatories, nitroimidazoles, coccidiostats, phenicols, and others. Although the presence of a matrix helped reduce the binding of analytes on surface active sites, all of the filter types partially retained at least some of the drugs in the final extracts. In testing by flow-injection analysis, all of the membrane filters were also observed to leach interfering components. Ultimately, filtration was avoided altogether in the final sample preparation approach known as the quick, easy, cheap, effective, rugged, safe, efficient, and robust (QuEChERSER) mega-method, and ultracentrifugation was chosen as an alternative.


Assuntos
Resíduos de Drogas , Drogas Veterinárias , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/análise , Drogas Veterinárias/análise , Resíduos de Drogas/análise
20.
Bioelectrochemistry ; 157: 108663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38359574

RESUMO

A new type of electrochemical biosensors in a flow injection system with printed electrodes were developed and tested. A filter disc (7 mm diameter) with immobilized enzyme was placed at the printed electrode. This conception combines the advantages of biosensors with a bioreceptor at the electrode surface and systems with spatially separated enzymatic and detection parts. Filters of different composition (glass, quartz, and cellulose), thickness, porosity, and ways of binding enzyme to their surface were tested. Only covalent bonds throughout a filter-aminosilane-glutaraldehyde-enzyme chain ensured a long-time and reproducible biosensor response. The developed method of biosensor preparation has been successfully applied to enzymes glucose oxidase, laccase and choline oxidase. The dependences of peak current on detection potential, flow rate, injection volume, analyte concentration as well as biosensor lifetime and reproducibility were investigated for glucose oxidase biosensor. The sensitivity of measurements was two or more times higher than that of biosensor with a mini-reactor filled by powder with immobilized enzyme. The developed biosensor with laccase was tested by determining dopamine in the pharmaceutical infusion product Tensamin®. Results of the analysis (40.0 ± 0.7 mg mL-1, SD = 0.8 mg mL-1, RSD = 1.85 %, N = 11) show a good agreement with the manufacturer's declared value.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose Oxidase/química , Enzimas Imobilizadas/química , Reprodutibilidade dos Testes , Lacase , Técnicas Biossensoriais/métodos , Eletrodos , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...