Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
1.
Cureus ; 16(6): e61791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975420

RESUMO

Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect of cancer treatment, affecting many patients. Cannabinoid agonists, such as nabilone and Δ9-tetrahydrocannabinol (THC), the main psychoactive component of Cannabis sativa L., have shown efficacy as antiemetics. Here, we report the case of Michael Roberts (MR), who we believe is the first British patient reimbursed by the National Health Service (NHS) England for the cost of medicinal cannabis flowers to manage CINV. Medical data were obtained from NHS records and individual funding request (IFR) forms. Patient-reported outcome measures (PROMs) were collected using validated questionnaires as part of the standard of care at the specialized private clinics where the prescription of medicinal cannabis was initiated. The patient presented with rectosigmoid adenocarcinoma with lung metastases. He received FOLFIRI (folinic acid, fluorouracil, and irinotecan) chemotherapy and underwent an emergency Hartmann's procedure with subsequent second-line FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy and lung ablation. MR reported severe nausea and vomiting associated with the initial FOLFIRI treatment. Antiemetics metoclopramide and aprepitant demonstrated moderated efficacy. Antiemetics ondansetron, levomepromazine, and nabilone were associated with intolerable side effects. Inhalation of THC-predominant cannabis flowers in association with standard medication improved CINV, anxiety, sleep quality, appetite, overall mood, and quality of life. Our results add to the available evidence suggesting that medicinal cannabis flowers may offer valuable support in cancer palliative care integrated with standard-of-care oncology treatment. The successful individual funding request in this case demonstrates a pathway for other patients to gain access to these treatments, advocating for broader awareness and integration of cannabis-based medicinal products in national healthcare services.

2.
Br J Dev Psychol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973427

RESUMO

This study investigated whether feedback on their errors and speed improves kindergarten children's performance in an executive function (EF) task. Children from Switzerland (N = 213, 49% female, Mage = 6.4 years) were tested in the Hearts and Flowers task pre- and post-training and trained either on a variant of this task with (n = 71) or without feedback (n = 72), or on a control learning task (n = 70). The feedback group performed more efficiently than the no-feedback group during the intervention and partially also in the post-test. Both EF training groups performed more efficiently than the control group in the post-test. These results suggest that kindergarten children detect and monitor their errors and even get better at it given the opportunity to practice. Moreover, they benefit additionally from external feedback. Integrating feedback into computerized cognitive training (and learning apps) could be a potential avenue for interventions in school settings.

3.
Biology (Basel) ; 13(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927303

RESUMO

Pollinators are needed for the reproduction of Echites umbellatus, and only sphingid moths have mouthparts long enough to reach the nectar at the bottom of the species' long, twisted floral tube. Though plants produce many flowers over a period of several months, one observes very few fruits in nature. We asked: (1) Are plants self-compatible, or do they need pollen from another individual to set fruit and seed? (2) Are cross-pollinations between unrelated individuals more successful than crosses with relatives? (3) How does the relatedness of pollen and ovule parent plants affect fruit set, seed number, and seed quality? We investigated the breeding system of E. umbellatus by collecting fruits from seven sites, growing plants and performing hand pollinations over a period of several years, collecting and measuring fruits and counting seeds. Echites umbellatus is self-incompatible, though some individuals produce fruit by self-pollination. Cross-pollinations between unrelated individuals set the most fruit (59%), and those that were self-pollinated set the least (9%). Fruit set from cross-pollinations between related individuals was intermediate (32%). Although the number of seeds per fruit did not differ significantly among pollination treatments, fruits from self-pollinations had substantially fewer viable seeds than outcrossed fruits, with fruits from sibling crosses being intermediate. There were higher levels of self-compatibility in the fragment populations compared with plants from intact habitats. Self-incompatibility may explain why fruit set is low in this plant species; future investigation into the breakdown of self-incompatibility in smaller populations is warranted.

4.
J Exp Child Psychol ; 246: 105975, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852401

RESUMO

Both pre-error speeding and post-error slowing reflect monitoring and control strategies. Post-error slowing is relatively well-established in children, whereas pre-error speeding is much less studied. Here we investigated (a) whether kindergarten and first-grade children show pre-error speeding in a cognitive control task (Hearts and Flowers) and, if so, (b) whether post-error slowing is associated with pre-error speeding. We analyzed the data from 153 kindergartners and 468 first-graders. Both kindergartners and first-graders showed significant pre-error speeding and post-error slowing, with no differences between the two samples in the magnitude of each. The magnitude of pre-error speeding and post-error slowing was correlated within individuals in both samples and to a similar extent. That is, children who sped up more extremely toward an error also slowed down more extremely after an error. These findings provide evidence that pre-error speeding and post-error slowing are related in children as early as kindergarten age and may in concert reflect how optimal children's monitoring and control of their performance is in a cognitive control task.

5.
Plant Biol (Stuttg) ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861656

RESUMO

Heteranthery, the presence of different types of anthers on the same flower, is a floral adaptation that aims to balance the need for pollinators to collect pollen as a food resource while ensuring sufficient pollen for pollination. We investigate the role of heteranthery in the pollination of Senna arnottiana flowers and how it is affected by the behaviour of visiting bee species, with a particular focus on the impact of the invasive bumblebee Bombus terrestris. In three populations of S. arnottiana we measured the size of three sets of anthers and style, stigma-anther separation, pollen quantity and fruit set, and contrasted it with the body size, behaviour, and pollination effectiveness of all floral visitors. Different bee species visited S. arnottiana flowers, and their foraging behaviour varied. Large-bodied native bees, including Centris cineraria, Caupolicana sp. and Cadeguala occidentalis, preferentially visited short anthers, whereas B. terrestris, an exotic bumblebee, foraged from both short and long anthers without distinction. In addition, B. terrestris contacted the stigma at a lower rate than large-bodied native bees. Instead of concentrating its pollen-gathering efforts on the feeding anthers, as predicted by the "division of labor" hypothesis, B. terrestris indiscriminately visited both types of anthers similarly. This behaviour of B. terrestris may disrupt the adaptive significance of heteranthery by mixing the roles of pollination and feeding anthers of S. arnottiana. Therefore, our results highlight the potential disruption of this relationship by exotic pollinators and the need to consider it in conservation efforts.

6.
Plant Reprod ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844561

RESUMO

KEY MESSAGE: Candidate male sterility genes were identified in sugarcane, which interacts with kinase-related proteins, transcription factors, and plant hormone signaling pathways to regulate stamen and anther development. Saccharum officinarum is a cultivated sugarcane species that its predominant feature is high sucrose content in stems. Flowering is necessary for breeding new cultivars but will terminate plant growth and reduce sugar yield. The wild sugarcane species Saccharum spontaneum has robust and viable pollen, whereas most S. officinarum accessions are male sterile, which is a desirable trait of a maternal parent in sugarcane breeding. To study male sterility and related regulatory pathways in sugarcane, we carried out RNAseq using flowers in different developmental stages between male-sterile S. officinarum accession 'LA Purple' and fertile S. spontaneum accession 'SES208'. Gene expression profiles were used to detect how genes are differentially expressed between male sterile and fertile flowers and to identify candidate genes for male sterility. Weighted gene correlation networks analysis (WGCNA) was conducted to investigate the regulatory networks. Transcriptomic analyses showed that 988 genes and 2888 alleles were differentially expressed in S. officinarum compared to S. spontaneum. Ten differentially expressed genes and thirty alleles were identified as candidate genes and alleles for male sterility in sugarcane. The gene Sspon.03G0007630 and two alleles of the gene Sspon.08G0002270, Sspon.08G0002270-2B and Sspon.08G0014700-1A, were involved in the early stamen or carpel development stages, while the remaining genes were classified into the post-meiosis stage. Gibberellin, auxin, and jasmonic acid signaling pathways are involved in the stamen development in sugarcane. The results expanded our knowledge of male sterility-related genes in sugarcane and generated genomic resources to facilitate the selection of ideal maternal parents to improve breeding efficiency.

7.
Ecol Evol ; 14(6): e11553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895562

RESUMO

Plant-pollinator interactions are constrained by floral traits and available pollinators, both of which can vary across environmental gradients, with consequences for the stability of the interaction. Here, we quantified how the pollination ecology of a high-mountain hummingbird-pollinated plant changes across a progressively more stressful environmental gradient of the Venezuelan Andes. We compared pollination ecology between two populations of this plant: Piedras Blancas (PB) and Gavidia (GV), 4450 and 3600 m asl, respectively. We hypothesised that self-compatibility might be higher at the higher altitude site, however we found that flowers showed similar capacities for self-compatibility in both localities. Seed production by flowers exposed to natural pollinators was significantly higher in the lower locality, where we also found higher nectar quality, larger flowers and increased frequencies of pollinator visitations. Interestingly, the population energy offered in the nectar was the same for both localities due to the higher density and floral aggregation found in the higher altitude population. Our study demonstrates how two plant populations in different environmental conditions have different pollination ecology strategies. Pollinator visitations or their absence result in trait associations in one population that are independent in the other. These population differences are not explained by differences in pollinator assembly, but by environmental heterogeneity.

8.
Foods ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38890967

RESUMO

A miniaturized solid-phase extraction of two tropane alkaloids (TAs) and twenty-one pyrrolizidine alkaloids (PAs) from infusions of dry edible flowers using optimized µSPEed® technique was developed. The optimization of the µSPEed® methodology involved testing different cartridges and comparing various volumes and numbers of loading cycles. The final conditions allowed for a rapid extraction, taking only 3.5 min. This was achieved using a C18-ODS cartridge, conditioning with 100 µL of methanol (two cycles), loading 100 µL of the infusion sample (seven cycles), and eluting the analytes with 100 µL of methanol (two cycles). Prior to their analysis by UHPLC-IT-MS/MS, the extracts were evaporated and reconstituted in 100 µL of water (0.2% formic acid)/methanol (0.2% ammonia) 95:5 (v/v), allowing for a preconcentration factor of seven times. The methodology was successfully validated obtaining recoveries ranging between 87 and 97%, RSD of less than 12%, and MQL between 0.09 and 0.2 µg/L. The validated methodology was applied to twenty samples of edible flower infusions to evaluate the safety of these products. Two infusion samples obtained from Acmella oleracea and Viola tricolor were contaminated with 0.16 and 0.2 µg/L of scopolamine (TA), respectively, while the infusion of Citrus aurantium was contaminated with intermedine and lycopsamine (PAs) below the MQL.

9.
3 Biotech ; 14(7): 175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38855146

RESUMO

Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.

10.
Front Pharmacol ; 15: 1354794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846087

RESUMO

Introduction: Emerging proof suggests that Apocynum venetum flowers polysaccharide (AVFP) has immunomodulatory effects in vitro. However, the action mechanism of AVFA is still unclear in vivo. The purpose of this study is to probe into the potential mechanism of AVFA in immunosuppressed mice by investigating organ index, cytokine levels, anti-oxidative stress capacity, transcriptomics, and gut microbiota. Methods: Immunocompromised mice induced by cyclophosphamide (CTX) were divided into six groups. The enzyme-labeled method, hematoxylin and eosin, transcriptomics, and high-throughput sequencing were used to detect the regulatory effects of AVFP on immunocompromised mice and the function of AVFP on the concentration of short-chain fatty acids (SCFAs) by high-performance liquid chromatography (HPLC) analysis. The Spearman correlation analysis was used to analyze the correlation between the intestinal microbiota and biochemical indexes. Results: The experimental results illustrated that AVFP has protective effects against CTX-induced immunosuppression in mice by prominently increasing the organ index and levels of anti-inflammatory factors in serum in addition to enhancing the antioxidant capacity of the liver. Meanwhile, it could also signally decrease the level of pro-inflammatory cytokines in serum, the activity of transaminase in serum, and the content of free radicals in the liver, and alleviate the spleen tissue damage induced by CTX. Transcriptomics results discovered that AVFP could play a role in immune regulation by participating in the NF-κB signaling pathway and regulating the immune-related genes Bcl3, Hp, Lbp, Cebpd, Gstp2, and Lcn2. Gut microbiota results illustrated that AVFP could increase the abundance of beneficial bacteria, reduce the abundance of harmful bacteria, and regulate the metabolic function of intestinal microorganisms while dramatically improving the content of SCFAs, modulating immune responses, and improving the host metabolism. The Spearman analysis further evaluated the association between intestinal microbiota and immune-related indicators. Conclusion: These findings demonstrated that AVFP could enhance the immune effects of the immunosuppressed mice and improve the body's ability to resist oxidative stress.

11.
Microsc Res Tech ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856214

RESUMO

Field emission finds a vital space in numerous scientific and technological applications, including high-resolution imaging at micro- and nano-scales, conducting high-energy physics experiments, molecule ionization in spectroscopy, and electronic uses. A continuous effort exists to develop new materials for enhanced field emission applications. In the present work, two-dimensional (2D) well-aligned CdSSe flake flowers (CdSSe-FFs) were successfully grown on gold-coated silicon substrate utilizing a simple and affordable chemical bath deposition approach at ambient temperature. The time-dependent growth mechanism from nanoparticles to FFs was observed at optimized parameters such as concentration of precursors, pH (~11), deposition time, and solution temperature. The crystalline nature of CdSSe-FFs is confirmed by high-resolution transmission electron microscopy (HRTEM) results, and selected area electron diffraction (SAED) observations reveal a hexagonal crystal structure. Additionally, the CdSSe-FFs thickness was confirmed by TEM analysis and found to be ~20-30 nm. The optical, photoelectric, and field emission (FE) characteristics are thoroughly explored which shows significant enhancement due to the formation of heterojunction between the gold-coated silicon substrate and CdSSe-FFs. The UV-visible absorption spectra of CdSSe-FFs show enhanced absorption at 700 nm, corresponding to the energy band gap (Eg) of 1.77 eV. The CdSSe-FFs exhibited field emission and photosensitive field emission (PSFE) characteristics. In FE study CdSSe-FFs shows an increase in current density of 387.2 µ A cm-2 in an applied field of 4.1 V m-1 which is 4.08 fold as compared to without light illumination (95.1 µ A cm-2). Furthermore, it shows excellent emission current stability at the preset value of 1.5 µA over 3 h with a deviation of the current density of less than 5% respectively. RESEARCH HIGHLIGHTS: Novel CdSSe flake flowers were grown on Au-coated Si substrate by a cost-effective chemical bath deposition route. The growth mechanism of CdSSe flake flowers is studied in detail. Field emission and Photoluminescence study of CdSSe flake flowers is characterized. CdSSe flake flowers with nanoflakes sharp edges exhibited enhanced field emission properties.

12.
New Phytol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922897

RESUMO

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.

13.
J Evol Biol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902913

RESUMO

Pollinators are thought to be the main drivers of floral evolution. Flowers are also colonized by abundant communities of microbes that can affect the interaction between plants and their pollinators. Very little is known, however, about how flower-colonizing microbes influence floral evolution. Here we performed a six-generation experimental evolution study using fast-cycling Brassica rapa, in which we factorially manipulated the presence of pollinators and flower microbes to determine how pollinators and microbes interact in driving floral evolution. We measured the evolution of six morphological traits, as well as plant mating system and flower attractiveness. Only one of the six traits (flower number) evolved in response to pollinators, while microbes did not drive the evolution of any trait, nor did they interact with pollinators in driving evolution of morphological traits. Moreover, we did not find evidence that pollinators or microbes affected the evolution of flower attractiveness to pollinators. However, we found an interactive effect of pollinators and microbes on the evolution of autonomous selfing, a trait that is expected to evolve in response to pollinator limitation. Overall, we found only weak evidence that microbes mediate floral evolution. However, our ability to detect an interactive effect of pollinators and microbes might have been limited by weak pollinator-mediated selection in our experimental setting. Our results contrast with previous (similar) experimental evolution studies, highlighting the susceptibility of such experiments to drift and to experimental artefacts.

14.
Curr Biol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38925116

RESUMO

Foraging behavior frequently plays a major role in driving the geographic distribution of animals. Buzzing to extract protein-rich pollen from flowers is a key foraging behavior used by bee species across at least 83 genera (these genera comprise ∼58% of all bee species). Although buzzing is widely recognized to affect the ecology and evolution of bees and flowering plants (e.g., buzz-pollinated flowers), global patterns and drivers of buzzing bee biogeography remain unexplored. Here, we investigate the global species distribution patterns within each bee family and how patterns and drivers differ with respect to buzzing bee species. We found that both distributional patterns and drivers of richness typically differed for buzzing species compared with hotspots for all bee species and when grouped by family. A major predictor of the distribution, but not species richness overall for buzzing members of four of the five major bee families included in analyses (Andrenidae, Halictidae, Colletidae, and to a lesser extent, Apidae), was the richness of poricidal flowering plant species, which depend on buzzing bees for pollination. Because poricidal plant richness was highest in areas with low wind and high aridity, we discuss how global hotspots of buzzing bee biodiversity are likely influenced by both biogeographic factors and plant host availability. Although we explored global patterns with state-level data, higher-resolution work is needed to explore local-level drivers of patterns. From a global perspective, buzz-pollinated plants clearly play a greater role in the ecology and evolution of buzzing bees than previously predicted.

15.
Foods ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928803

RESUMO

Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.

16.
Plants (Basel) ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931027

RESUMO

Flowers are plant structures characteristic of the phylum Angiosperms composed of organs thought to have emerged from homologous structures to leaves in order to specialize in a distinctive function: reproduction. Symmetric shapes, colours, and scents all play important functional roles in flower biology. The evolution of flower symmetry and the morphology of individual flower parts (sepals, petals, stamens, and carpels) has significantly contributed to the diversity of reproductive strategies across flowering plant species. This diversity facilitates attractiveness for pollination, protection of gametes, efficient fertilization, and seed production. Symmetry, the establishment of body axes, and fate determination are tightly linked. The complex genetic networks underlying the establishment of organ, tissue, and cellular identity, as well as the growth regulators acting across the body axes, are steadily being elucidated in the field. In this review, we summarise the wealth of research already at our fingertips to begin weaving together how separate processes involved in specifying organ identity within the flower may interact, providing a functional perspective on how identity determination and axial regulation may be coordinated to inform symmetrical floral organ structures.

17.
Nanotechnology ; 35(35)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38806012

RESUMO

A low-temperature polymer-assisted wet chemical method was used to synthesise Cu-doped ZnO bicone nanoflowers at three different polyethylene glycol (PEG) concentrations. The effects of PEG concentration on the structural, morphological and optical properties of Cu doped ZnO nanostructures were studied. X-ray diffraction studies revealed that the as-synthesized Cu doped ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase. The scanning electron microscopy analysis showed that the prepared nanostructures have bicone- nanoflower morphology and PEG concentration has strongly influenced the size as well the shape of nanoflowers. The TEM analysis confirmed the nanoflower morphology and the presence of diffraction planes obtained from the XRD data. The compositional analysis was performed by x-ray photoelectron Spectroscopy. The surface passivation effect of PEG on the band gap energies was studied by analysing UV -visible spectra of all the samples. The room-temperature fluorescent spectra of all the nanoflowers showed multiple peak emissions, both in the ultra-violet and visible regions, with varying intensities. These recasted multiple peaks are attributed to the morphological modification caused by the PEG addition.

18.
Food Sci Nutr ; 12(5): 3265-3272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726460

RESUMO

Foods enriched with plants have gradually become an area of increasing research interest because plant ingredients may offer several positive effects on human health and the body. The aim of our study was to develop biscuits fortified with three different types of edible flowers (marigold, lavender, and rose) and examine their physical and antioxidant characteristics, as well as consumer acceptability. The antioxidant properties and characterization of biscuits highlighted that edible flowers may cause increased total polyphenol and total flavonoid yields, as well as DPPH radical scavenging activities. Concerning biscuits fortified with rose petals, the total monomer anthocyanin content was also raised. In addition, the results showed that the antioxidant properties of biscuits increased with increasing concentration (from 2.5% to 5.0%) of edible flowers. Despite this, the consumer acceptability results clearly showed that the addition of marigold and lavender at a concentration of 5.0% caused significantly decreased overall acceptance. We found that the fortification step may increase the spread ratio, which is an important quality attribute of biscuits. We found slight variations in the diameter, thickness, and baking loss parameters of fortified biscuits compared to the control. All in all, the best results were obtained when the biscuits were fortified with rose petals at a concentration of 5%.

19.
Small ; : e2400520, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733234

RESUMO

Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.

20.
BMC Plant Biol ; 24(1): 448, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783206

RESUMO

BACKGROUND: Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS: This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS: Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.


Assuntos
Metilação de DNA , Fagopyrum , Flores , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...