Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Ann Biomed Eng ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969956

RESUMO

As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient's aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.

2.
ArXiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38947915

RESUMO

Background and Objective: Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods: An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results: The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions: Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.

3.
Comput Biol Med ; 179: 108828, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996554

RESUMO

Transcatheter aortic heart valve thrombosis (THVT) affects long-term valve durability, transvalvular pressure gradient and leaflet mobility. In this study, we conduct high-fidelity fluid-structure interaction simulations to perform Lagrangian particle tracing in a generic model with larger aortic diameters (THVT model) with and without neo-sinus which is compared to a model of unaffected TAVI patients (control model). Platelet activation indices are computed for each particle to assess the risk of thrombus formation induced by high shear stresses followed by flow stagnation. Particle tracing indicates that fewer particles contribute to sinus washout of the THVT model with and without neo-sinus compared to the control model (-34.9%/-34.1%). Stagnating particles in the native sinus of the THVT model show higher platelet activation indices than for the control model (+39.6% without neo-sinus, +45.3% with neo-sinus). Highest activation indices are present for particles stagnating in the neo-sinus of the larger aorta representing THVT patients (+80.2% compared to control). This fluid-structure interaction (FSI) study suggests that larger aortas lead to less efficient sinus washout in combination with higher risk of platelet activation among stagnating particles, especially within the neo-sinus. This could explain (a) a higher occurrence of thrombus formation in transcatheter valves compared to surgical valves without neo-sinus and (b) the neo-sinus as the prevalent region for thrombi in TAV. Pre-procedural identification of larger aortic roots could contribute to better risk assessment of patients and improved selection of a patient-specific anti-coagulation therapy.

4.
Comput Methods Programs Biomed ; 255: 108314, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39024970

RESUMO

BACKGROUND AND OBJECTIVE: Transcatheter aortic valve implantation (TAVI) has significantly transformed the management of aortic valve (AV) diseases, presenting a minimally invasive option compared to traditional surgical valve replacement. Computational simulations of TAVI become more popular and offer a detailed investigation by employing patient-specific models. On the other hand, employing accurate material modeling procedures and applying basic modeling steps are crucial to determining reliable numerical results. Therefore, this review aims to outline the basic modeling approaches for TAVI, focusing on material modeling and geometry extraction, as well as summarizing the important findings from recent computational studies to guide future research in the field. METHODS: This paper explains the basic steps and important points in setting up and running TAVI simulations. The material properties of the leaflets, valves, stents, and tissues utilized in TAVI simulations are provided, along with a comprehensive explanation of the geometric extraction methods employed. The differences between the finite element analysis, computational fluid dynamics, and fluid-structure interaction approaches are pointed out and the important aspects of TAVI modeling are described by elucidating the recent computational studies. RESULTS: The results of the recent findings on TAVI simulations are summarized to demonstrate its powerful potential. It is observed that the material properties of aortic tissues and components of implanted valves should be modeled realistically to determine accurate results. For patient-specific AV geometries, incorporating calcific deposits on the leaflets is essential for ensuring the accuracy of computational findings. The results of numerical TAVI simulations indicate the significance of the selection of optimal valves and precise deployment within the appropriate anatomical position. These factors collectively contribute to the effective functionality of the implanted valve. CONCLUSIONS: Recent studies in the literature have revealed the critical importance of patient-specific modeling, the selection of accurate material models, and bio-prosthetic valve diameters. Additionally, these studies emphasize the necessity of precise positioning of bio-prosthetic valves to achieve optimal performance in TAVI, characterized by an increased effective orifice area and minimal paravalvular leakage.

5.
Bioinspir Biomim ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025108

RESUMO

The reef ecosystem plays a vital role as a habitat for fish species with limited swimming capabilities, serving not only as a sanctuary and food source but also influencing their behavioral tendencies. Understanding the intricate mechanism through which fish adeptly navigate the moving targets within reef environments within complex water flow, all while evading obstacles and maintaining stable postures, has remained a challenging and prominent subject in the realms of fish behavior, ecology, and biomimetics alike. An integrated simulation framework is used to investigate fish predation problems within intricate environments, combining deep reinforcement learning algorithms (DRL) with high-precision fluid-structure interaction numerical methods-lmmersed Boundary Lattice Boltzmann Method (lB-LBM). The Soft Actor-Critic (SAC) algorithm is used to improve the intelligent fish's capacity for random exploration, tackling the multi-objective sparse reward challenge inherent in real-world scenarios. Additionally, a reward shaping method tailored to its action purposes has been developed, capable of capturing outcomes and trend characteristics effectively. The convergence and robustness advantages of the method elucidated in this paper are showcased through two case studies: one addressing fish capturing randomly moving targets in hydrostatic flow field, and the other focusing on fish counter-current foraging in reef environments to capture drifting food. A comprehensive analysis was conducted of the influence and significance of various reward types on the decision-making processes of intelligent fish within intricate environments.

6.
Front Bioeng Biotechnol ; 12: 1433811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007055

RESUMO

Advances in computational fluid dynamics continuously extend the comprehension of aneurysm growth and rupture, intending to assist physicians in devising effective treatment strategies. While most studies have first modelled intracranial aneurysm walls as fully rigid with a focus on understanding blood flow characteristics, some researchers further introduced Fluid-Structure Interaction (FSI) and reported notable haemodynamic alterations for a few aneurysm cases when considering wall compliance. In this work, we explore further this research direction by studying 101 intracranial sidewall aneurysms, emphasizing the differences between rigid and deformable-wall simulations. The proposed dataset along with simulation parameters are shared for the sake of reproducibility. A wide range of haemodynamic patterns has been statistically analyzed with a particular focus on the impact of the wall modelling choice. Notable deviations in flow characteristics and commonly employed risk indicators are reported, particularly with near-dome blood recirculations being significantly impacted by the pulsating dynamics of the walls. This leads to substantial fluctuations in the sac-averaged oscillatory shear index, ranging from -36% to +674% of the standard rigid-wall value. Going a step further, haemodynamics obtained when simulating a flow-diverter stent modelled in conjunction with FSI are showcased for the first time, revealing a 73% increase in systolic sac-average velocity for the compliant-wall setting compared to its rigid counterpart. This last finding demonstrates the decisive impact that FSI modelling can have in predicting treatment outcomes.

7.
Sci Rep ; 14(1): 16301, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009618

RESUMO

In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies. The model's geometry, elastic modulus, volumetric compliance, and diameter distensibility were characterized experimentally and numerically simulated. Moreover, a comparison with silicone models with the same anatomy was performed. A PVA-H vessel model was integrated into a mock circulatory loop for a preliminary ultrasound-based assessment of fluid dynamics. The vascular model's geometry was successfully replicated, and the elastic moduli amounted to 0.31 ± 0.007 MPa and 0.29 ± 0.007 MPa for PVA-H and silicone, respectively. Both materials exhibited nearly identical volumetric compliance (0.346 and 0.342% mmHg-1), which was higher compared to numerical simulation (0.248 and 0.290% mmHg-1). The diameter distensibility ranged from 0.09 to 0.20% mmHg-1 in the experiments and between 0.10 and 0.18% mmHg-1 in the numerical model at different positions along the vessel model, highlighting the influence of vessel geometry on local deformation. In conclusion, our study presents a method and provides insights into the manufacturing and mechanical characterization of hydrogel-based thin-wall vessel models, potentially allowing for a combination of fluid dynamics and tissue engineering studies in future cardio- and neurovascular research.


Assuntos
Estenose das Carótidas , Hidrogéis , Modelos Cardiovasculares , Álcool de Polivinil , Humanos , Estenose das Carótidas/fisiopatologia , Álcool de Polivinil/química , Hidrogéis/química , Impressão Tridimensional , Artérias Carótidas/fisiopatologia , Artérias Carótidas/diagnóstico por imagem , Módulo de Elasticidade , Hemodinâmica , Engenharia Tecidual/métodos
8.
Comput Methods Programs Biomed ; 255: 108327, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018788

RESUMO

BACKGROUND AND OBJECTIVE: Atherosclerotic lesions of coronary arteries (stenosis) are caused by the buildup of lipids and blood-borne substances within the artery wall. Their qualitative and rapid assessment is still a challenging task. The primary therapy for this pathology involves implanting coronary stents, which help to restore the blood flow in atherosclerosis-prone arteries. In-stent restenosis is a stenting-procedure complication detected in about 10-40% of patients. A numerical study using 2-way fluid-structure interaction (FSI) assesses the stenting procedure quality and can decrease the number of negative post-operative results. Nevertheless, boundary conditions (BCs) used in simulation play a crucial role in implementation of an adequate computational analysis. METHODS: Three CoCr stents designs were modelled with the suggested approach. A multi-layer structure describing the artery and plaque with anisotropic hyperelastic mechanical properties was adopted in this study. Two kinds of boundary conditions for a solid domain were examined - fixed support (FS) and remote displacement (RD) - to assess their impact on the hemodynamic parameters to predict restenosis. Additionally, the influence of artery elongation (short-artery model vs. long-artery model) on numerical results with the FS boundary condition was analyzed. RESULTS: The comparison of FS and RD boundary conditions demonstrated that the variation of hemodynamic parameters values did not exceed 2%. The analysis of short-artery and long-artery models revealed that the difference in hemodynamic parameters was less than 5.1%, and in most cases, it did not exceed 2.5%. The RD boundary conditions were found to reduce the computation time by up to 1.7-2.0 times compared to FS. Simple stent model was shown to be susceptible to restenosis development, with maximum WSS values equal to 183 Pa, compared to much lower values for other two stents. CONCLUSIONS: The study revealed that the stent design significantly affected the hemodynamic parameters as restenosis predictors. Moreover, the stress-strain state of the system artery-plaque-stent also depends on a proper choice of boundary conditions.

9.
Comput Biol Med ; 179: 108900, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029430

RESUMO

In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.

10.
Front Med Technol ; 6: 1399729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011523

RESUMO

Over the last years computer modelling and simulation has emerged as an effective tool to support the total product life cycle of cardiovascular devices, particularly in the device preclinical evaluation and post-market assessment. Computational modelling is particularly relevant for heart valve prostheses, which require an extensive assessment of their hydrodynamic performance and of risks of hemolysis and thromboembolic complications associated with mechanically-induced blood damage. These biomechanical aspects are typically evaluated through a fluid-structure interaction (FSI) approach, which enables valve fluid dynamics evaluation accounting for leaflets movement. In this context, the present narrative review focuses on the computational modelling of bileaflet mechanical aortic valves through FSI approach, aiming to foster and guide the use of simulations in device total product life cycle. The state of the art of FSI simulation of heart valve prostheses is reviewed to highlight the variety of modelling strategies adopted in the literature. Furthermore, the integration of FSI simulations in the total product life cycle of bileaflet aortic valves is discussed, with particular emphasis on the role of simulations in complementing and potentially replacing the experimental tests suggested by international standards. Simulations credibility assessment is also discussed in the light of recently published guidelines, thus paving the way for a broader inclusion of in silico evidence in regulatory submissions. The present narrative review highlights that FSI simulations can be successfully framed within the total product life cycle of bileaflet mechanical aortic valves, emphasizing that credible in silico models evaluating the performance of implantable devices can (at least) partially replace preclinical in vitro experimentation and support post-market biomechanical evaluation, leading to a reduction in both time and cost required for device development.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38826864

RESUMO

Fluid-structure interaction with contact poses profound mathematical and numerical challenges, particularly when considering realistic contact scenarios and the influence of surface roughness. Computationally, contact introduces challenges in altering the fluid domain topology and preserving stress balance. This work introduces a new mathematical framework for a unified continuum description of fluid-porous-structure-contact interaction (FPSCI), leveraging the Navier-Stokes-Brinkman (NSB) equations to incorporate porous effects within the surface asperities in the contact region. Our approach maintains mechanical consistency during contact, circumventing issues associated with contact models and complex interface coupling conditions, allowing for the modeling of tangential creeping flows due to surface roughness. The unified continuum and variational multiscale formulation ensure robustness by enabling stable and unified integration of fluid, porous, and solid sub-problems. Computational efficiency and ease of implementation - key advantages of our approach - are demonstrated by solving two benchmark problems of a falling ball and an idealized heart valve. This research has broad implications for fields reliant on accurate fluid-structure interactions and promising advancements in modeling and numerical simulation techniques.

12.
Water Sci Technol ; 89(11): 2867-2879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877618

RESUMO

In a fluid environment, biofilms usually form and grow into streamers attached to solid surfaces. Existing research on single streamers studied their formation and failure modes. In the experiment on biofilm growth in a microfluidic channel, we found that rings composed of bacteria and an extracellular matrix are important elements on a mesoscopic scale. In the fluid environment, the failure of these ring elements causes damage to streamers. We simulated the growth and deformation of the ring structure in the micro-channel using multi-agent simulation and fluid-structure coupling of a porous elastic body. Based on this, we simulated the biofilm evolution involving multi-ring deformation, which provides a new length scale to study the biofilm streamer dynamics in fluid environments.


Assuntos
Biofilmes , Biofilmes/crescimento & desenvolvimento , Microfluídica , Técnicas Analíticas Microfluídicas/instrumentação
13.
Comput Biol Med ; 178: 108730, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917535

RESUMO

BACKGROUND: A promising approach to cuff-less, continuous blood pressure monitoring is to estimate blood pressure (BP) from Pulse Wave Velocity (PWV). However, most existing PWV-based methods rely on empirical BP-PWV relations and have large prediction errors, which may be caused by the implicit assumption of thin-walled, linear elastic arteries undergoing small deformations. Our objective is to understand the BP-PWV relationship in the absence of such limiting assumptions. METHOD: We performed Fluid-Structure Interaction (FSI) simulations of the radial artery and the common carotid artery under physiological flow conditions. In these dynamic simulations, we employed two constitutive models for the arterial wall: the linear elastic model, implying a thin-walled linear elastic artery undergoing small deformations, and the Holzapfel-Gasser-Ogden (HGO) model, accounting for the nonlinear effects of collagen fibers and their orientations on the large arterial deformation. RESULTS: Despite the changing BP, the linear elastic model predicts a constant PWV throughout a cardiac cycle, which is not physiological. The HGO model correctly predicts a positive BP-PWV correlation by capturing the nonlinear deformation of the artery, showing up to 50 % variations of PWV in a cardiac cycle. CONCLUSION: Dynamic FSI simulations reveal that the BP-PWV relationship strongly depends on the arterial constitutive model, especially in the radial artery. To infer BP from PWV, one must account for the varying PWV, a consequence of the nonlinear arterial response due to collagen fibers. Future efforts should be directed towards robust measurement of time-varying PWV if it is to be used to predict BP.

14.
Comput Methods Programs Biomed ; 254: 108270, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38878358

RESUMO

BACKGROUND AND OBJECTIVE: The implantation of ventricular assist devices (VADs) has become an important treatment option for patients with heart failure. Aortic valve insufficiency is a common complication caused by VADs implantation. Currently, there is very little quantitative research on the effects of transcatheter micro VADs or the intervention pumps on the aortic valves. METHODS: In this study, the multi-component arbitrary Lagrange-Eulerian method is used to perform fluid-structure interaction simulations of the aortic valve model with and without intervention pumps. The effects of intervention pumps implantation on the opening area of the aortic valves, the stress distribution, and the flow characteristics are quantitatively analyzed. Statistical results are consistent with clinical guidelines and experiments. RESULTS: The implantation of intervention pumps leads to the valve insufficiency and causes weak valve regurgitation. In the short-term treatment, the valve regurgitation is within a controllable range. The distribution and variation of stress on the leaflets are also affected by intervention pumps. The whirling flow in the flow direction affects the closing speed of the aortic valves and optimizes the stress distribution of the valves. In the models with whirling flow, the effects of intervention pumps implantation on valve motion and stress distribution differ from those without whirling flow. However, the valve insufficiency and valve regurgitation caused by intervention pumps still exist in the models with whirling flow. Conventional artificial bioprosthetic valves have limited effectiveness in treating the valve diseases caused by intervention pumps implantation. CONCLUSIONS: This study quantitatively investigates the impact of intervention pumps on the aortic valves, and investigates the effect of blood rotation on the valve behavior, which is a gap in previous research. We suggest that in the short-term treatment, the implantation of intervention pumps has limited impact on aortic valves, caution should be exercised against valve regurgitation issues caused by intervention pumps.

15.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38806008

RESUMO

Atherosclerosis is a cardiovascular disease mainly caused by plaque deposition in blood vessels. Plaque comprises components such as thrombosis, fibrin, collagen, and lipid core. It plays an essential role in inducing rupture in a blood vessel. Generally, Plaque could be described as three kinds of elastic models: cellular Plaque, hypocellular Plaque, and calcified Plaque. The present study aimed to investigate the behavior of atherosclerotic plaque rupture according to different lipid cores using Fluid-Structure Interaction (FSI). The blood vessel was also varied with different thicknesses (0.05, 0.25, and 0.5 mm). In this study, FSI simulation with a cellular plaque model with various thicknesses was investigated to obtain information on plaque rupture. Results revealed that the blood vessel with Plaque having a lipid core represents higher stresses than those without a lipid core. Blood vessels' thin thickness, like a thin cap, results in more considerable than Von Mises stress. The result also suggests that even at low fracture stress, the risk of rupture due to platelet decomposition at the gap was more significant for cellular plaques.


Assuntos
Simulação por Computador , Doença da Artéria Coronariana , Modelos Cardiovasculares , Placa Aterosclerótica , Estresse Mecânico , Humanos , Placa Aterosclerótica/patologia , Doença da Artéria Coronariana/patologia , Vasos Sanguíneos/patologia , Lipídeos/química , Vasos Coronários/patologia , Elasticidade
16.
Comput Biol Med ; 176: 108604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761502

RESUMO

OBJECTIVE: In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. METHODS: The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. RESULTS: Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. CONCLUSION: FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Artéria Pulmonar , Hemodinâmica/fisiologia , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Hidrodinâmica , Animais , Humanos , Simulação por Computador , Valva Pulmonar/cirurgia , Valva Pulmonar/fisiologia , Autoenxertos , Estresse Mecânico
17.
Heliyon ; 10(9): e30443, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720729

RESUMO

Ischemic stroke, particularly embolic stroke, stands as a significant global contributor to mortality and long-term disabilities. This paper presents a comprehensive simulation of emboli motion through the middle cerebral artery (MCA), a prevalent site for embolic stroke. Our patient-specific computational model integrates major branches of the middle cerebral artery reconstructed from magnetic resonance angiography images, pulsatile flow dynamics, and emboli of varying geometries, sizes, and material properties. The fluid-structure interactions method is employed to simulate deformable emboli motion through the middle cerebral artery, allowing observation of hemodynamic changes in artery branches upon embolus entry. We investigated the impact of embolus presence on shear stress magnitude on artery walls, analyzed the effects of embolus material properties and geometries on embolus trajectory and motion dynamics within the middle cerebral artery. Additionally, we evaluated the non-Newtonian behavior of blood, comparing it with Newtonian blood behavior. Our findings highlight that embolus geometry significantly influences trajectory, motion patterns, and hemodynamics within middle cerebral artery branches. Emboli with visco-hyperelastic material properties experienced higher stresses upon collision with artery walls compared to those with hyperelastic properties. Furthermore, considering blood as a non-Newtonian fluid had notable effects on emboli stresses and trajectories within the artery, particularly during collisions. Notably, the maximum von Mises stress experienced in our study was 21.83 kPa, suggesting a very low probability of emboli breaking during movement, impact, and after coming to a stop. However, in certain situations, the magnitude of shear stress on them exceeded 1 kPa, increasing the likelihood of cracking and disintegration. These results serve as an initial step in anticipating critical clinical conditions arising from arterial embolism in the middle cerebral artery. They provide insights into the biomechanical parameters influencing embolism, contributing to improved clinical decision-making for stroke management.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38710896

RESUMO

PURPOSE: Numerical models that simulate the behaviors of the coronary arteries have been greatly improved by the addition of fluid-structure interaction (FSI) methods. Although computationally demanding, FSI models account for the movement of the arterial wall and more adequately describe the biomechanical conditions at and within the arterial wall. This offers greater physiological relevance over Computational Fluid Dynamics (CFD) models, which assume the walls do not move or deform. Numerical simulations of patient-specific cases have been greatly bolstered by the use of imaging modalities such as Computed Tomography Angiography (CTA), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT), and Intravascular Ultrasound (IVUS) to reconstruct accurate 2D and 3D representations of artery geometries. The goal of this study was to conduct a comprehensive review on CFD and FSI models on coronary arteries, and evaluate their translational potential. METHODS: This paper reviewed recent work on patient-specific numerical simulations of coronary arteries that describe the biomechanical conditions associated with atherosclerosis using CFD and FSI models. Imaging modality for geometry collection and clinical applications were also discussed. RESULTS: Numerical models using CFD and FSI approaches are commonly used to study biomechanics within the vasculature. At high temporal and spatial resolution (compared to most cardiac imaging modalities), these numerical models can generate large amount of biomechanics data. CONCLUSIONS: Physiologically relevant FSI models can more accurately describe atherosclerosis pathogenesis, and help to translate biomechanical assessment to clinical evaluation.

19.
Bioinspir Biomim ; 19(4)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722361

RESUMO

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Assuntos
Biomimética , Desenho de Equipamento , Vento , Asas de Animais , Animais , Asas de Animais/fisiologia , Biomimética/métodos , Odonatos/fisiologia , Materiais Biomiméticos/química , Voo Animal/fisiologia , Centrais Elétricas
20.
Front Cardiovasc Med ; 11: 1377765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590697

RESUMO

Background: Patients with single-ventricle physiologies continue to experience insufficient circulatory power after undergoing palliative surgeries. This paper proposed a right heart assist device equipped with flexible blades to provide circulatory assistance for these patients. The optimal elastic modulus of the flexible blades was investigated through numerical simulation. Methods: A one-way fluid-structure interaction (FSI) simulation was employed to study the deformation of flexible blades during rotation and its impact on device performance. The process began with a computational fluid dynamics (CFD) simulation to calculate the blood pressure rise and the pressure on the blades' surface. Subsequently, these pressure data were exported for finite element analysis (FEA) to compute the deformation of the blades. The fluid domain was then recreated based on the deformed blades' shape. Iterative CFD and FEA simulations were performed until both the blood pressure rise and the blades' shape stabilized. The blood pressure rise, hemolysis risk, and thrombosis risk corresponding to blades with different elastic moduli were exhaustively evaluated to determine the optimal elastic modulus. Results: Except for the case at 8,000 rpm with a blade elastic modulus of 40 MPa, the pressure rise associated with flexible blades within the studied range (rotational speeds of 4,000 rpm and 8,000 rpm, elastic modulus between 10 MPa and 200 MPa) was lower than that of rigid blades. It was observed that the pressure rise corresponding to flexible blades increased as the elastic modulus increased. Additionally, no significant difference was found in the hemolysis risk and thrombus risk between flexible blades of various elastic moduli and rigid blades. Conclusion: Except for one specific case, deformation of the flexible blades within the studied range led to a decrease in the impeller's functionality. Notably, rotational speed had a more significant impact on hemolysis risk and thrombus risk compared to blade deformation. After a comprehensive analysis of blade compressibility, blood pressure rise, hemolysis risk, and thrombus risk, the optimal elastic modulus for the flexible blades was determined to be between 40 MPa and 50 MPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...