Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339040

RESUMO

Conventional waterborne polyurethane (WPU) has poor water resistance and poor overall performance, which limits its application in outdoor coatings. A solution to this problem is urgently needed. The introduction of fluorine-containing groups can effectively improve the water resistance of WPU. In this study, a new fluorinated chain extender (HFBMA-HPA) synthesized by free radical copolymerization and epoxy resin (E-44) were used to co-modify WPU, and five waterborne fluorinated polyurethane (WFPU) emulsions with different fluorine contents were prepared by the self-emulsification method. The effects of HFBMA-HPA content on the emulsion particle properties, coating surface properties, mechanical properties, water resistance, thermal stability, and corrosion resistance were investigated. The results showed that the WFPU coating had excellent thermal stability, corrosion resistance, and mechanical properties. As the content of HFBMA-HPA increased from 0 wt% to 14 wt%, the water resistance of the WFPU coating gradually increased, the water contact angle (WCA) increased from 73° to 98°, the water absorption decreased from 7.847% to 3.062%, and the surface energy decreased from 32.8 mN/m to 22.6 mN/m. The coatings also showed impressive performances in the adhesion and flexibility tests in extreme conditions. This study provides a waterborne fluorinated polyurethane material with excellent comprehensive performance that has potential application value in the field of outdoor waterproof and anticorrosion coatings.

2.
J Appl Biomater Funct Mater ; 20: 22808000221087337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35315298

RESUMO

OBJECTIVE: To develop a low shrinkage, hydrophobic, degradation-resistant, antimicrobial dental composite using a fluorinated acrylate, and a difunctional oxirane. METHODS: The effects of a fluorinated acrylate (2-(perfluorooctyl)ethyl acrylate; PFOEA), a difunctional oxirane (EPALLOY™ 5001; EP5001), and a three-component initiator system (camphorquinone/ethyl 4-dimethylaminobenzoate/4-Isopropyl-4'-methyldiphenyl iodonium Tetrakis (pentafluorophenyl) borate; CQ/EDMAB/Borate) on bisphenol A glycidyl dimethacrylate: triethylene glycol dimethacrylate (BisGMA:TEGDMA) composite surface hardness, degree of monomer-to-polymer conversion, hydrophobicity, translucency, mechanical properties, polymerization shrinkage and shrinkage stress, degradation, water imbibition, and antimicrobial properties were determined. RESULTS: Overall the experimental composites had comparable mechanical properties and lower volumetric polymerization shrinkage and shrinkage stress as compared to BisGMA:TEGDMA controls. Addition of PFOEA increased composite hydrophobicity, but it decreased degree of cure, ultimate transverse strength, and translucency. It also decreased polymerization shrinkage and shrinkage stress. The use of the CQ/EDMAB/Borate initiator system was beneficial for the cure and mechanical properties of the 30% w/w PFOEA group. However, it decreased the hydrophobicity and translucency of those composites. The addition of EP5001, at the low concentration used in this work, did not contribute to reduced polymerization volumetric shrinkage or antimicrobial properties, but it did reduce shrinkage stress. CONCLUSIONS: A mechanically viable hydrophobic composite system with reduced polymerization shrinkage and shrinkage stress has been developed by adding PFOEA and EP5001. However, the addition of EP5001 did not render the composite antimicrobial due to the low concentration used. Further research is needed to determine the lowest concentration at which EP5001 provides antimicrobial activity. The composites developed here have the potential to improve longevity of traditional BisGMA:TEGDMA composite systems.


Assuntos
Anti-Infecciosos , Óxido de Etileno , Acrilatos , Anti-Infecciosos/farmacologia , Resinas Compostas/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais
3.
Chemosphere ; 284: 131302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34198063

RESUMO

Clogging generally happens to the leachate piping system, which poses a risk to the environment. A low surface energy nanocomposite is prepared to mitigate the cloggings, by adding the fluorinated acrylate polymer and hydrophobically modified nano-silica into high-density polyethylene (HDPE) substrate. The best addition of the fluorinated acrylate polymer and the nano-silica is given as 15% and 5%, to produce the composite with a low surface energy of 29.4 mJ/m2. Through the characterization of contact angle (CA), electrochemical corrosion, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), atomic force microscope (AFM) and thermogravimetry (TG), the composite shows low wettability, good corrosion resistance and thermal stability. The surface hydrophobic property of the composite remains unchanged after being immersed in an acidic (pH = 2) and an alkaline (pH = 12) solution, indicating that the prepared composite has strong adaptability to the extreme environments. In addition, the composite shows better anti-scaling performance than that of the commercial high-density polyethylene (HDPE) and polyvinyl chloride (PVC) pipe materials by application of a dispensing leachate immersion test. The results provide insights into engineering practice for the design and manufacture of pipe materials for leachate collection and transport.


Assuntos
Polietileno , Poluentes Químicos da Água , Acrilatos , Polímeros de Fluorcarboneto , Dióxido de Silício
4.
Nanomaterials (Basel) ; 11(5)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063584

RESUMO

A combination of acrylate formulations and SiO2 nanoparticles is investigated with the aim to improve the optical properties of low-refractive index polymers that are used for the fabrication of planar optical waveguides. A decrease in refractive index and also in the thermo-optic coefficient of nanocomposite materials is clearly demonstrated, while some formulations exhibit an increase in the glass transition temperature. The possibility of using these nanocomposite materials to fabricate waveguiding layers with low optical propagation losses at telecommunication wavelengths around 1550 nm is also shown. The nanomaterials can be applied in optical microchips on polymer platforms.

5.
J Mech Behav Biomed Mater ; 80: 11-19, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414465

RESUMO

A series of fluorinated dental resin composites were prepared with two kinds of SiO2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO2 nanopartices (30nm) and SiO2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (Wp), water solubility (Wy), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO2 microparticles, SiO2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower Wp under the same filler content. Especially, 50% SiO2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%).


Assuntos
Resinas Acrílicas/química , Resinas Compostas/química , Metacrilatos/análise , Polímeros/análise , Poliuretanos/química , Silanos/análise , Dióxido de Silício/análise , Humanos , Teste de Materiais , Polimerização , Propriedades de Superfície
6.
Materials (Basel) ; 9(9)2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773860

RESUMO

A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA) within a low-shrinkage acrylated hyperbranched polymer (HBP) and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA) of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS) negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125°) and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10°) and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5°) and also featured self-cleaning properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA