Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Immunol ; 15: 1391404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799444

RESUMO

Introduction: Follicular Lymphoma (FL) results from the malignant transformation of germinal center (GC) B cells. FL B cells display recurrent and diverse genetic alterations, some of them favoring their direct interaction with their cell microenvironment, including follicular helper T cells (Tfh). Although FL-Tfh key role is well-documented, the impact of their regulatory counterpart, the follicular regulatory T cell (Tfr) compartment, is still sparse. Methods: The aim of this study was to characterize FL-Tfr phenotype by cytometry, gene expression profile, FL-Tfr origin by transcriptomic analysis, and functionality by in vitro assays. Results: CD4+CXCR5+CD25hiICOS+ FL-Tfr displayed a regulatory program that is close to classical regulatory T cell (Treg) program, at the transcriptomic and methylome levels. Accordingly, Tfr imprinting stigmata were found on FL-Tfh and FL-B cells, compared to their physiological counterparts. In addition, FL-Tfr co-culture with autologous FL-Tfh or cytotoxic FL-CD8+ T cells inhibited their proliferation in vitro. Finally, although FL-Tfr shared many characteristics with Treg, TCR sequencing analyses demonstrated that part of them derived from precursors shared with FL-Tfh. Discussion: Altogether, these findings uncover the role and origin of a Tfr subset in FL niche and may be useful for lymphomagenesis knowledge and therapeutic management.


Assuntos
Linfoma Folicular , Linfócitos T Reguladores , Linfoma Folicular/imunologia , Linfoma Folicular/genética , Linfoma Folicular/patologia , Humanos , Linfócitos T Reguladores/imunologia , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Masculino , Feminino , Técnicas de Cocultura , Centro Germinativo/imunologia
2.
Proc Natl Acad Sci U S A ; 121(5): e2304020121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261619

RESUMO

Follicular regulatory T cells (Tfr) can play opposite roles in the regulation of germinal center (GC) responses. Depending on the studies, Tfr suppress or support GC and B cell affinity maturation. However, which factors determine positive vs. negative effects of Tfr on the GC B cell is unclear. In this study, we show that GC centrocytes that express MYC up-regulate expression of CCL3 chemokine that is needed for both the positive and negative regulation of GC B cells by Tfr. B cell-intrinsic expression of CCL3 contributes to Tfr-dependent positive selection of foreign Ag-specific GC B cells. At the same time, expression of CCL3 is critical for direct Tfr-mediated suppression of GC B cells that acquire cognate to Tfr nuclear proteins. Our study suggests that CCR5 and CCR1 receptors promote Tfr migration to CCL3 and highlights Ccr5 expression on the Tfr subset that expresses Il10. Based on our findings and previous studies, we suggest a model of chemotactically targeted checkpoint control of B cells undergoing positive selection in GCs by Tfr, where Tfr directly probe and license foreign antigen-specific B cells to complete their positive selection in GCs but, at the same time, suppress GC B cells that present self-antigens cognate to Tfr.


Assuntos
Linfócitos B , Linfócitos T Reguladores , Centro Germinativo , Autoantígenos , Quimiocina CCL3
3.
Arthritis Res Ther ; 26(1): 21, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218985

RESUMO

BACKGROUND: Patients with rheumatoid arthritis (RA) showed impaired immune tolerance characterized by reduced follicular regulatory T (Tfr) cells, and they also exhibited altered gut microbiotas and their metabolites in RA. However, the association of gut microbiotas and their metabolites with the immune tolerance mediated by Tfr cells in RA remains unclear. METHODS: Peripheral blood and stool samples were collected from 32 new-onset RA patients and 17 healthy controls (HCs) in the Second Hospital of Shanxi Medical University between January 2022 and June 2022. The peripheral blood was used to detect the circulating regulatory T (Treg), helper T(Th)17, Tfr, and follicular helper T (Tfh) cells by modified flow cytometry. The stool samples were used to analyze the gut microbiotas and their metabolites via 16S rDNA sequencing and metabolomic profiling. We aimed to characterize the gut microbiotas and their metabolites in RA and identified their association with Tfr cell-mediated immune tolerance. RESULTS: The new-onset RA demonstrated reduced Treg and Tfr cells, associated with the disease activity and autoantibodies. There were significant differences in gut microbiotas between the two groups as the results of ß diversity analysis (P = 0.039) including 21 differential gut microbiotas from the phylum to genus levels. In which, Ruminococcus 2 was associated with the disease activity and autoantibodies of RA, and it was identified as the potential biomarker of RA [area under curve (AUC) = 0.782, 95% confidence interval (CI) = 0.636-0.929, P = 0.001]. Eleven differential metabolites were identified and participated in four main pathways related to RA. Arachidonic acid might be the potential biomarker of RA (AUC = 0.724, 95% CI = 0.595-0.909, P = 0.038), and it was the core metabolite as the positive association with six gut microbiotas enriched in RA. The reduced Tfr cells were associated with the altered gut microbiotas and their metabolites including the Ruminococcus 2, the arachidonic acid involved in the biosynthesis of unsaturated fatty acid pathway and the 3-methyldioxyindole involved in the tryptophan metabolism pathway. CONCLUSION: The breakdown of immune tolerance mediated by reduced Tfr cells was associated with the altered gut microbiotas and their metabolites implying the possible mechanism of RA pathogenesis from the perspective of microecology-metabolism-immune.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Humanos , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Disbiose , Ácido Araquidônico/metabolismo , Biomarcadores/metabolismo , Autoanticorpos/metabolismo , Artrite Reumatoide/metabolismo , Tolerância Imunológica
4.
Curr Med Sci ; 44(1): 102-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079054

RESUMO

OBJECTIVE: This study aimed to investigate the changes of follicular helper T (TFH) and follicular regulatory T (TFR) cell subpopulations in patients with non-small cell lung cancer (NSCLC) and their significance. METHODS: Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls. Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1 (PD-1) and inducible co-stimulator (ICOS), and TFR cell subpopulation based on cluster determinant 45RA (CD45RA) and forkhead box protein P3 (FoxP3). The levels of interleukin-10 (IL-10), interleukin-17a (IL-17a), interleukin-21 (IL-21), and transforming growth factor-ß (TGF-ß) in the plasma were measured, and changes in circulating B cell subsets and plasma IgG levels were also analyzed. The correlation between serum cytokeratin fragment antigen 21-1 (CYFRA 21-1) levels and TFH, TFR, or B cell subpopulations was further explored. RESULTS: The TFR/TFH ratio increased significantly in NSCLC patients. The CD45RA+FoxP3int TFR subsets were increased, with their proportions increasing in stages II to III and decreasing in stage IV. PD-1+ICOS+TFH cells showed a downward trend with increasing stages. Plasma IL-21 and TGF-ß concentrations were increased in NSCLC patients compared with healthy controls. Plasmablasts, plasma IgG levels, and CD45RA+FoxP3int TFR cells showed similar trends. TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages I-III and negatively correlated with CYFRA 21-1 in stage IV. CONCLUSION: Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC, which is associated with serum CYFRA 21-1 levels and reflects disease progression.


Assuntos
Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas , Queratina-19 , Neoplasias Pulmonares , Humanos , Células T Auxiliares Foliculares , Receptor de Morte Celular Programada 1 , Progressão da Doença , Fatores de Transcrição Forkhead , Fator de Crescimento Transformador beta , Imunoglobulina G
5.
Int Tinnitus J ; 27(1): 10-15, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050879

RESUMO

OBJECTIVE: Data regarding the imbalance in follicular helper T (Tfh) and follicular regulatory T (Tfr) cell responses in patients having chronic rhinosinusitis with nasal polyps (CRSwNP) is so far limited. Thus, we aimed to assess the changes in circulating Tfh and Tfr in CRSwNP patients. METHODS: This case-control study included 21 patients having CRSwNP and 20 age and sex-matched healthy blood donors as a control group. Lund-Mackay staging system was used for radiologic scoring of chronic rhinosinusitis. Two milliliters of peripheral blood samples were collected from all participants into EDTA-containing vacutainer tubes to assess the levels of Tfh and Tfr cells using flow cytometry. RESULTS: Patients having CRSwNP did not show significant differences in the percentages of CD4+ T cells and total CD4+CXCR5+ T cells from healthy controls. Meanwhile, levels of both activated circulating Tfh and Tfr showed a marked rise in patients than controls. In addition, a positive correlation was observed between the levels of both activated Tfh and Tfr cells. CONCLUSION: An imbalance in circulating Tfh/Tfr levels was detected in patients having CRSwNP. A significant rise in the levels of Tfh and Tfr was detected in patients proposing a possible role of this imbalance in disease pathogenesis.


Assuntos
Pólipos Nasais , Linfócitos T Reguladores , Humanos , Linfócitos T Auxiliares-Indutores , Estudos de Casos e Controles , Pólipos Nasais/complicações
6.
J Am Heart Assoc ; 12(24): e030356, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38063185

RESUMO

BACKGROUND: Arterial/aortic tertiary lymphoid organs (ATLOs), characterized by germinal centers, control local arterial immune responses. T follicular helper cells (Tfh), resident in germinal centers, regulate immunoglobulin production and germinal center development. They consist of Tfh1, Tfh2, and Tfh17 subsets. T follicular regulatory (Tfr) cells possess suppressive functions as regulatory T cells and migrate into germinal centers. Immunoglobulin G4 (IgG4)-related diseases manifest in vascular lesions as frequently formed inflammatory aneurysms (IgG4-related abdominal aortic aneurysm [IgG4-AAAs]). IgG4-AAAs contain several ATLOs. METHODS AND RESULTS: We performed whole-slide immunohistochemical image analysis in surgical specimens of IgG4-AAAs (n=21), non-IgG4-related inflammatory AAAs (n=17), atherosclerotic AAAs (n=10), and Takayasu arteritis (n=5). IgG4-AAA was characterized by numerous, large, irregular-shaped ATLOs, and higher numbers of Tfr and Tfh2 cells than Tfh1 cells were present compared with others. The morphologic abnormalities (in number, area, and form) of ATLOs in IgG4-AAAs and the increased number of Tfr cells are closely related to the activity of IgG4-related diseases. All T-cell subsets were more enriched within ATLOs than outside ATLOs. In particular, an increase in Tfr cells in IgG4-AAAs was associated with ATLO formation. Increased Tfh17 cells were found in Takayasu arteritis, and atherosclerotic AAA and non-IgG4-related inflammatory AAAs were characterized by increased Tfh1 cells. CONCLUSIONS: In the classification of vascular lesions, considering the imbalance in T-cell subsets, IgG4-AAA should be positioned as adventitial vasculitis with predominant Tfr and Tfh2 cells, accompanied by the abnormal appearance of ATLOs.


Assuntos
Aterosclerose , Doença Relacionada a Imunoglobulina G4 , Arterite de Takayasu , Humanos , Doença Relacionada a Imunoglobulina G4/patologia , Arterite de Takayasu/patologia , Subpopulações de Linfócitos T , Aorta/patologia , Imunoglobulina G , Aterosclerose/patologia , Linfócitos T Auxiliares-Indutores
7.
Cancer Immunol Immunother ; 72(12): 4249-4259, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943341

RESUMO

Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.


Assuntos
Neoplasias Esofágicas , Vesículas Extracelulares , Humanos , Linfócitos T Auxiliares-Indutores , Células T Auxiliares Foliculares , Interleucina-10 , Antígeno CTLA-4 , Antígeno B7-H1 , Linfócitos T Reguladores , Terapia de Imunossupressão
8.
J Inflamm Res ; 16: 2879-2892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456782

RESUMO

Background: Follicular helper T (Tfh), follicular regulatory T (Tfr), and follicular cytotoxic T (Tfc) cells play important roles in autoimmune diseases. Nevertheless, their changes of functional phenotypes in ulcerative colitis (UC), most importantly, their changes in colon tissue as the target-organ, have not been explored. Methods: DSS-colitis was induced in Balb/c mice and lymphocytes were collected from spleen, mesenteric lymph nodes, peripheral blood and colon. Tfh, Tfr, and Tfc cells were analyzed using flow cytometry based on their CD4+CXCR5+FOXP3-Tfh, CD4+CXCR5+FOXP3+Tfr and CD8+CXCR5+Tfc expressions. Various functional characterization markers including CD44, CD62L, TIGIT, CD226, PD-1, ICOS, Helios, CTLA-4 and Bcl6 were analyzed in the T cell subsets of the organs. Results: Tfh and Tfr cells in the colon were significantly increased in DSS-colitis mice. Additionally, the proportions of Tfr and Tfc cells in the peripheral blood were also increased, while Tfc cell proportions in the colon were decreased. The proportion of naïve cells in the Tfh, Tfr and Tfc cells in the colon and peripheral blood decreased, while the proportion of effector memory T cells increased. The TIGIT+CD226-Tfh and Tfc cells were upregulated in the colon of DSS-colitis mice. The PD-1+, ICOS+ and PD-1+ICOS+ Tfh cells were increased in both the colonic and peripheral blood Tfh and Tfc of DSS-colitis mice. The Bcl6+ proportions in the Tfh and Tfr were increased in the colon of DSS-colitis mice. Conclusion: The colonic and peripheral blood Tfh and Tfc cells of DSS-colitis mice have a significantly activated T cell phenotype, which may play a significant role in the pathogenesis of UC.

9.
Elife ; 122023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862132

RESUMO

Follicular regulatory T cells (Tfr) restrict development of autoantibodies and autoimmunity while supporting high-affinity foreign antigen-specific humoral response. However, whether Tfr can directly repress germinal center (GC) B cells that acquire autoantigens is unclear. Moreover, TCR specificity of Tfr to self-antigens is not known. Our study suggests that nuclear proteins contain antigens specific to Tfr. Targeting of these proteins to antigen-specific B cells in mice triggers rapid accumulation of Tfr with immunosuppressive characteristics. Tfr then exert negative regulation of GC B cells with predominant inhibition of the nuclear protein-acquiring GC B cells, suggesting an important role of direct cognate Tfr-GC B cells interactions for the control of effector B cell response.


Assuntos
Proteínas Nucleares , Linfócitos T Reguladores , Animais , Camundongos , Linfócitos B , Centro Germinativo , Autoantígenos
10.
Methods Mol Biol ; 2559: 3-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36180622

RESUMO

Follicular regulatory T (TFR) cells, a subset of Foxp3+ regulatory T cells (Tregs), play an essential role in the regulation of germinal center (GC) response and humoral self-tolerance. Although it is generally accepted that TFR cells suppress GC antibody responses mediated by follicular helper T (TFH) cells and B cells, the helper activity of TFR cells on GC responses has also been recently reported. Because of this, it is critical to develop specific assays that are able to precisely assess TFR cell function, particularly its in vivo activity, independent of differentiation and other Tregs. Here we describe an adoptive transfer approach in conjugation with flow cytometry and ELISA to evaluate the TFR cell function on TFH, B cells, and antibody response in vivo.


Assuntos
Formação de Anticorpos , Linfócitos T Auxiliares-Indutores , Fatores de Transcrição Forkhead , Centro Germinativo , Linfócitos T Reguladores
11.
BMC Immunol ; 23(1): 34, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778692

RESUMO

BACKGROUND: HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS: Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION: Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.


Assuntos
Infecções por HIV , Dipeptidil Peptidase 4 , Centro Germinativo , Humanos , Linfonodos , Linfócitos T Reguladores
12.
J Immunol Methods ; 505: 113266, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398062

RESUMO

Follicular regulatory T cells (Tfrs), a specialized subset of regulatory T cells (Tregs), have a particular role in the control of follicular helper T cell-driven germinal center (GC) responses. Following differentiation signals similar to those received by follicular helper T cells (Tfhs), Tfrs gain expression of characteristic chemokine receptors and transcription factors, such as CXCR5 and Bcl-6, allowing them to migrate into the B-cell follicle and perform in situ suppression. Thus, together with Tfhs, Tfrs help maintaining an optimized GC-reaction. However, the mechanism underlying the Treg-to-Tfr transition remains obscure. Here, we established a highly reproducible protocol for investigating the differentiation of Tregs into Tfrs by constructing spleen-chimeric mice combined with retrovirus transduction. We demonstrated that using this strategy, over 4 folds of Tregs could differentiate into Tfrs in Bcl-6 overexpression group compared to control counterparts (Migr1), and Bcl-6 could efficiently promote Tfr differentiation during acute viral infection. Hence, this method provides us an easy access to investigate the factors that regulate the differentiation program that converts Tregs into Tfrs, which will enhance our understanding of the networks regulating GC-reaction and shed new light on the molecular basis of immune homeostasis.


Assuntos
Linfócitos T Reguladores , Viroses , Animais , Linfócitos B , Centro Germinativo , Camundongos , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores , Viroses/metabolismo
13.
Chinese Journal of Nephrology ; (12): 218-224, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-933858

RESUMO

Objective:To investigate the effect of interleukin (IL)-7 receptor α (IL-7Rα) antibody on the immune inflammation and renal injury in MRL/lpr lupus mice.Methods:Fifteen 3-4-week-old female MRL/lpr lupus mice (specific pathogen free) weighing 15-16 g were bred to 14-week-old and randomly divided into three groups: IL-7Rα antibody intervention group, isotype antibody (positive control) group and normal saline (negative control) group. The mice in the threc groups were intraperitoneally injected with IL-7Rα antibody, isotype antibody and normal saline respectively, with 100 μg three times a week for 4 weeks. At the age of 18-week old, the mice were sacrificed. Twenty-four-hour urinary protein was detected by Coomassie brilliant blue method, serum creatinine was detected by peroxidase method, and the expression of autoantibody (anti-double strand DNA antibody) and inflammatory factors such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and IL-21 was detected by enzyme-linked immunosorbent assay method. Renal pathology was detected by PAS and Sirius red staining, and CD3 and F4/80 in renal tissues were detected by immunohistochemistry method. Regulatory T cells, follicullar helper T cells (Tfh) and follicular regulatory T cells (Tfr) were detected by flow cytometry.Results:The 24-hour urinary protein, serum creatinine, serum anti-double strand DNA antibody and serum IFN-γ and IL-21 in the IL-7Rα antibody intervention group were significantly lower than those in the control groups (all P<0.01). However, there was no significant difference in serum TNF-α among the three groups ( F=0.39, P>0.05). The positive infiltrating cells of CD3 and F4/F80, and the ratio of type Ⅰ/Ⅲ collagen fibers ( F=41.11, P<0.01) of renal tissues in the IL-7Rα antibody intervention group were lower than those in the other two groups. Compared with the control groups, the ratio of regulatory T cells (CD4 +CD25 +Foxp3 +)/effector T cells (CD4 +CD25 +) in blood of IL-7Rα antibody intervention group increased ( F=21.64, P<0.01), while the ratio of Tfr (CD4 +CXCR5 +Foxp3 +)/Tfh (CD4 +CXCR5 +) in peripheral blood and spleen increased ( F=38.95, P<0.01; F=12.90, P<0.01). Conclusion:IL-7Rα antibody can reduce the production of autoantibodies such as anti-double strand DNA antibody and inflammatory factors by increasing the ratio of regulatory T cells and Tfr/Tfh, thus alleviating immune inflammation and renal damage in MRL/lpr lupus mice.

14.
Mol Cancer ; 20(1): 150, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798898

RESUMO

BACKGROUND: Accumulation of Foxp3+ regulatory T (Treg) cells in the tumor often represents an important mechanism for cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy. Many tumor-infiltrating Treg cells display an activated phenotype and express the transcription factor Blimp1. However, the specific impact of these Blimp1+ Treg cells and their follicular regulatory T (TFR) cell subset on tumor and the underlying mechanisms of action are not yet well-explored. METHODS: Various transplantable tumor models were established in immunocompetent wild-type mice and mice with a Foxp3-specific ablation of Blimp1. Tumor specimens from patients with metastatic melanoma and TCGA datasets were analyzed to support the potential role of Treg and TFR cells in tumor immunity. In vitro culture assays and in vivo adoptive transfer assays were used to understand how Treg, TFR cells and antibody responses influence tumor control. RNA sequencing and NanoString analysis were performed to reveal the transcriptome of tumor-infiltrating Treg cells and tumor cells, respectively. Finally, the therapeutic effects of anti-PD-1 treatment combined with the disruption of Blimp1+ Treg activity were evaluated. RESULTS: Blimp1+ Treg and TFR cells were enriched in the tumors, and higher tumoral TFR signatures indicated increased risk of melanoma metastasis. Deletion of Blimp1 in Treg cells resulted in impaired suppressive activity and a reprogramming into effector T-cells, which were largely restricted to the tumor-infiltrating Treg population. This destabilization combined with increased anti-tumor effector cellular responses, follicular helper T-cell expansion, enhanced tumoral IgE deposition and activation of macrophages secondary to dysregulated TFR cells, remodeled the tumor microenvironment and delayed tumor growth. The increased tumor immunogenicity with MHC upregulation improved response to anti-PD-1 blockade. Mechanistically, Blimp1 enforced intratumoral Treg cells with a unique transcriptional program dependent on Eomesodermin (Eomes) expression; deletion of Eomes in Blimp1-deficient Treg cells restored tumor growth and attenuated anti-tumor immunity. CONCLUSIONS: These findings revealed Blimp1 as a new critical regulator of tumor-infiltrating Treg cells and a potential target for modulating Treg activity to treat cancer. Our study has also revealed two FCERIA-containing immune signatures as promising diagnostic or prognostic markers for melanoma patients.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Humoral/genética , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Transcriptoma , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
15.
Front Pharmacol ; 12: 734040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707499

RESUMO

Objective: To investigate the immunological mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in inflammatory bowel disease (IBD). Methods: Mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were intraperitoneally injected with phosphate-buffered saline, BM-MSCs, BM-MSCs with tumor necrosis factor-induced protein 6 (Tnfaip6) knockdown mediated by RNA interference recombinant adenovirus, and BM-MSCs-infected with control adenovirus or recombinant mouse Tnfaip6. The disease activity index, weight loss, and histological scores were recorded. Serum levels of Tnfaip6 and pro- and anti-inflammatory cytokines, including interleukin (IL)-21, tumor necrosis factor-alpha (TNF-α), IL-10 were measured by enzyme-linked immunosorbent assay. The relative expression levels of these cytokines, B-cell lymphoma 6 (BCL-6) and fork-like transcription factor p3 (Foxp3) in the colon were determined by real-time quantitative PCR (RT-qPCR). BCL-6 and Foxp3 are the master regulators of follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr), respectively. The infiltration of Tfh and Tfr in mesenteric lymph nodes (MLNs) and spleens was analyzed by flow cytometry. Results: Compared to the normal control group, the expression levels of BCL-6 and IL-21 in the colon, Tfh infiltration, and ratios of Tfh/Tfr in the MLNs and spleen, and the serum concentrations of IL-21 and TNF-α increased significantly in the colitis model group (p < 0.05). Intraperitoneal injection of BM-MSCs or Tnfaip6 ameliorated weight loss and clinical and histological severity of colitis, downregulated the expression of BCL-6, IL-21, and TNF-α, upregulated the expression of Foxp3, IL-10, and Tnfaip6 (p < 0.05), increased Tfr and reduced the infiltration of Tfh in the MLNs and spleen, and downregulated the Tfh/Tfr ratio (p < 0.05). On the other hand, BM-MSCs lost the therapeutic effect and immune regulatory functions on Tfh and Tfr after Tnfaip6 knockdown. Conclusion: Tfh increase in the inflamed colon, Tfh decrease and Tfr increase during the colitis remission phase, and the imbalance of the Tfh/Tfr ratio is closely related to the progression of IBD. Tnfaip6 secreted by BM-MSCs alleviates IBD by inhibiting Tfh differentiation, promoting Tfr differentiation, and improving the imbalance of Tfh/Tfr in mice.

16.
Front Immunol ; 12: 701862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335612

RESUMO

The K/BxN mouse model of rheumatoid arthritis (RA) closely resembles the human disease. In this model, arthritis results from activation of autoreactive KRN T cells recognizing the glycolytic enzyme glucose-6-phosphate isomerase (GPI) autoantigen, which provides help to GPI-specific B cells, resulting in the production of pathogenic anti-GPI antibodies that ultimately leads to arthritis symptoms from 4 weeks of age. Vasoactive intestinal peptide (VIP) is a neuropeptide broadly distributed in the central and peripheral nervous system that is also expressed in lymphocytes and other immune cell types. VIP is a modulator of innate and adaptive immunity, showing anti-inflammatory and immunoregulatory properties. Basically, this neuropeptide promotes a shift in the Th1/Th2 balance and enhances dedifferentiation of T regulatory cells (Treg). It has demonstrated its therapeutic effects on the collagen-induced arthritis (CIA) mouse model of RA. In the present hypothesis and theory article, we propose that the immunoregulatory properties of VIP may be due likely to the inhibition of T cell plasticity toward non-classic Th1 cells and an enhanced follicular regulatory T cells (Tfr) activity. The consequences of these regulatory properties are the reduction of systemic pathogenic antibody titers.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Peptídeo Intestinal Vasoativo/imunologia , Animais , Artrite Experimental/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Modelos Animais de Doenças , Glucose-6-Fosfato Isomerase/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th2/imunologia
17.
Front Med (Lausanne) ; 8: 690100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350197

RESUMO

Objective: Recent studies on follicular regulatory T (Tfr) and follicular helper T (Tfh) cells suggest that they may participate in the pathogenesis of rheumatoid arthritis (RA). Here, we examine Tfr-like and Tfh-like cells and their subsets in RA and assess the correlations between these subsets with B cells and cytokines related to the pathogenesis of RA and their clinical significance. Methods: The study population consisted of 18 healthy controls and 47 RA patients (17 new onset, 57.00 ± 11.73 years; 30 treated RA patients, 57.56 ± 1.97 years). Disease activity scores in 28 joints were calculated. The positive rates of rheumatoid factor (RF) and anticyclic citrullinated peptide antibodies (anti-CCP) were 82.9 and 89.4%, respectively. Cell subsets were analyzed using flow cytometry, and serum cytokine levels were measured using cytometric bead array. Results: Tfh-like and PD-1+ Tfh-like cells were elevated, and the distribution of Tfh-like cell subsets was altered with increased Tfh17-like and Tfh1/17-like cells in RA patients. The receiver operating characteristics curves for Tfh-like, Tfh17-like, Tfh1/17-like, and PD-1+ Tfh-like cells indicate improved RA diagnostic potential. RA patients had decreased regulatory T (Treg), Tfr-like, and memory Tfr-like (mTfr-like) cells and increased Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and their subsets, including Tfh1-like, Tfh2-like, Tfh1/17-like, and PD-1+ Tfh-like cells, were positively correlated with B cells. Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios were positively correlated with B cells in new-onset RA. Interleukin (IL)-2, IL-4, IL-17, interferon-γ, and tumor necrosis factor-α were positively correlated with Tfr-like and mTfr-like cells. IL-2 and IL-10 were positively correlated with Tfh-like and Tfh2-like cells. IL-4 was positively correlated with Tfh-like cells. Conclusions: Tfh-like and PD-1+ Tfh-like cells are increased, whereas Treg, Tfr-like, and mTfr-like cells are decreased in RA, leading to an imbalance in Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and a portion of their subsets as well as Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios are closely related to B cells. Dysfunction of cell subsets leads to abnormal levels of cytokines involved in the pathogenesis of RA. The altered distributions of Tfh-like cell subsets, especially Tfh1/17-like cells, represent potential therapeutic targets for treatment of RA.

18.
Front Immunol ; 12: 717421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394124

RESUMO

Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.


Assuntos
Reprogramação Celular , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Linhagem da Célula , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Humanos , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
J Leukoc Biol ; 110(2): 239-255, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33938586

RESUMO

Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases. This article summarizes the advances in several aspects of Tfr cell biology, with special focus on definition and phenotype, development and differentiation, regulatory factors, functions, and interactions with T/B cells and molecules involved in performance and regulation of Tfr function. Finally, we highlight the current understanding of Tfr cells involvement in autoimmunity and alloreactivity, and describe some drugs targeting Tfr cells. These latest studies have answered some basic questions in Tfr cell biology and explored the roles of Tfr cells in immune-mediated diseases.


Assuntos
Suscetibilidade a Doenças , Imunomodulação , Linfócitos T Reguladores/fisiologia , Animais , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Suscetibilidade a Doenças/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Ativação Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
20.
Clin Exp Immunol ; 205(1): 75-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759187

RESUMO

Follicular T helper (Tfh) and regulatory (Tfr) cells are distinct subsets of CD4+ T lymphocytes, regulating humoral immune responses in the germinal center. It is widely accepted that dysregulated Tfh and Tfr cells are associated with autoimmunity. In this study, we evaluated the frequencies of circulating chemokine receptor (CXCR)5+ programmed cell death 1 (PD-1+ ) Tfh (cTfh) and CXCR5+ PD-1+ forkhead box protein 3 (FoxP3+ ) CD25+ Tfr (cTfr) cells, and their corresponding cytokines from the peripheral blood mononuclear cells of 28 patients with relapsing-remitting multiple sclerosis (MS) and 16 age- and sex-matched healthy controls (HC). Subsets of cTfh cells by Th1- and Th17-related surface markers (CXCR3 and CCR6) were also evaluated. We found that the frequency of cTfh cells was significantly higher in MS patients compared to that of HC. Conversely, the frequency of cTfr cells was lower in MS patients than that of HC. Interleukin (IL)-21-producing cTfh cells were significantly increased in MS patients, while IL-10-secreting cTfr cells were lower in MS patients compared to levels in HC. Among cTfh cells, cTfh17.1 cells were the major subtypes that were significantly increased in MS patients compared to HC, with the frequency of IL-21-secreting cells being the highest. These results suggest that an imbalanced distribution of cTfh and cTfr exist in MS patients, which contributes to the reciprocally altered IL-21 and IL-10 production.


Assuntos
Citocinas/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Biomarcadores/metabolismo , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Interleucina-10/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucinas/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Receptores CXCR5/imunologia , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...