Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Appl Microbiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317667

RESUMO

AIMS: Salmonellosis, a major global cause of diarrheal diseases, significantly impacts the intestinal microbiome. Probiotic-rich beverages, such as kefir, are increasingly utilized as alternative health-promoting beverages associated with various microbiota benefits. This study investigated the repercussions of daily consumption of household-produced milk kefir on Salmonella enterica serovar Typhimurium infection in C57BL-6 mice. METHODS AND RESULTS: Kefir consumption pre infection reduced the presence of inflammatory cells in the colon and altered the cytokine profile by reducing IL-10 and increasing IFN-γ. Despite reducing intestinal inflammation, kefir intake did not yield a prompt response to an acute infection caused by the aggressive pathogen Salmonella. This contributed to increased mortality in the mice, evidenced by higher fecal Salmonella counts post-infection. Metabarcoding analysis demonstrated that the use of kefir before infection increases butyric acid by the higher abundance of Lachnospiraceae and Prevotellaceae families and genus in feces, coupled with an increase in Muribaculaceae family and Bacteroides genus among infected kefir-treated mice. While kefir hinted at microbiota alterations reducing enterobacteria (Helicobacter), decrease IL-10, and increased IFN-γ, butyric acid on pre-infection, the beverage potentially facilitated the systemic translocation of pathogens, intensifying the infection's severity by altering the immune response. CONCLUSIONS: The use of kefir in the dosage of 10% w/v (109 CFU), for acute infections with Salmonella Typhimurium, may not be enough to combat the infection and worsen the prognosis, leaving the intestine less inflamed, favoring the replication and translocation of the pathogen. These findings underscore the importance of prudently evaluating the widespread use of probiotics and probiotic-rich beverages, especially during acute infections, given their potential association with adverse effects during these diseases.

2.
Microorganisms ; 12(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203581

RESUMO

This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms.

3.
Anal Biochem ; 693: 115600, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964698

RESUMO

Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Contaminação de Alimentos , Microbiologia de Alimentos , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Microbiologia de Alimentos/métodos , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Bactérias/isolamento & purificação
4.
Braz J Microbiol ; 55(3): 2511-2525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922532

RESUMO

Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Microbiologia de Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Inocuidade dos Alimentos/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Microbiologia de Alimentos/métodos , Microbiologia de Alimentos/instrumentação , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética
5.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890872

RESUMO

Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from 4 to 8 days, though it is usually shorter than the period stated by law. Moreover, there is insufficient evidence regarding the efficacy of a short ripening period in reducing certain zoonotic foodborne pathogens, such as Brucella spp., Coxiella burnetiid, and Mycobacterium bovis (as part of the Mycobacterium tuberculosis complex). Additionally, a literature analysis revealed that the usual ripening conditions of Brazilian artisanal cheeses made with raw milk may be inefficient in reducing the levels of some hazardous bacterial, including Brucella spp., Listeria monocytogenes, coagulase-positive Staphylococcus, Salmonella, and Coxiella burnetti, to the acceptable limits established by law, thus failing to ensure product safety for all cheese types. Moreover, the assessment of the microbiological safety for this type of cheese should be broader and should also consider zoonotic pathogens commonly found in bovine herds. Finally, a standardized protocol for evaluating the effectiveness of cheese ripening must be established by considering its peculiarities.

6.
Int J Food Microbiol ; 420: 110783, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38851046

RESUMO

Despite the wide variety of native and exotic fruits in Brazil, there is limited understanding of their ability to support pathogens during storage. This study aimed to evaluate the behavior of Salmonella enterica and Listeria monocytogenes inoculated into the pulp of eight fruits native and exotic to Brazil: Jenipapo (Genipa americana L.), Umbu (Spondias tuberosa Arruda), Maná (Solanum sessiliflorum), Cajá-manga (Spondias dulcis), Physalis (Physalis angulata L.), Feijoa (Acca sellowiana), Cupuaçu (Theobroma grandiflorum) (average pH < 3.3) and in a low acidy fruit: Abiu (Pouteria caimito) (pH 6.11). The pathogens were inoculated into the different fruits and stored at 10, 20, 30 and 37 °C for up to 12 h and 6 days, respectively. Among the fruits evaluated, Abiu was the only one that allowed Salmonella growth, showing higher δ-values at 20 and 30 °C (5.6 log CFU/g for both temperatures). For Physalis and Feijoa, there was a small reduction in the pathogen concentration (<1 log-cycle), mainly at 10 and 20 °C, indicating its ability to remain in the matrices. For the other fruits, notable negative δ-values were obtained, indicating a tendency towards microbial inactivation. The survival potential was significantly affected by temperature in Abiu, Maná, Cupuaçu, and Cajá-manga (p < 0.05). The same phenomena regarding δ-value were observed for L. monocytogenes population, with the greatest survival potential observed at 20 °C in Abiu (3.3 log CFU/g). Regarding the exponential growth rates in Abiu, the highest values were observed at 30 and 37 °C, both for Salmonella (4.6 and 4.9 log (CFU/g)/day, respectively) and for L. monocytogenes (2.8 and 2.7 log (CFU/g)/day, respectively), with no significant difference between both temperatures. Regarding microbial inactivation, L. monocytogenes showed greater resistance than Salmonella in practically all matrices. Jenipapo and Umbu were the pulps that, in general, had the greatest effect on reducing the population of pathogens. Furthermore, the increase in storage temperature seems to favor the increase on inactivation rates. In conclusion, Salmonella and L. monocytogenes can grow only in Abiu pulp, although they can survive in some acidic tropical fruits kept at refrigeration and abusive temperatures.


Assuntos
Microbiologia de Alimentos , Frutas , Listeria monocytogenes , Salmonella enterica , Salmonella enterica/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Frutas/microbiologia , Brasil , Temperatura , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Armazenamento de Alimentos
7.
Int J Food Microbiol ; 421: 110777, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38909488

RESUMO

Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.


Assuntos
Cronobacter sakazakii , Microbiologia de Alimentos , Cronobacter sakazakii/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Humanos , Laticínios/microbiologia , Manipulação de Alimentos/métodos , Biofilmes/crescimento & desenvolvimento , Animais
9.
Data Brief ; 53: 109965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425878

RESUMO

Herein we report the draft genome sequences of Salmonella enterica subsp. enterica serovars Saintpaul ST50 and Worthington ST592 isolated from raw milk samples in Northeastern Brazil. The 4,696,281 bp S. Saintpaul ST50 genome contained 4,628 genes in 33 contigs, while S. Worthington ST592 genome was 4,890,415 bp in length, comprising 4,951 genes in 46 contigs. S. Worthington ST592 carried a conserved Col(pHAD28) plasmid which contains the antimicrobial resistance determinants tet(C), acc(6')-Iaa, and a nonsynonymous point mutation in ParC (p.T57S). The data could support further evolutionary and epidemiologic studies involving Salmonella organisms.

10.
Food Microbiol ; 120: 104495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431315

RESUMO

This study assessed the fate of a Salmonella enterica cocktail (S. Typhimurium, S. Enteritidis, S. Newport, S. Agona and S. Anatum; initial counts 3.5 log CFU/g) in minimally processed sliced chard, broccoli and red cabbage at 16 conditions of different temperature (7, 14, 21 and 37 °C) and relative humidity (RH; 15, 35, 65 and 95%) over six days (144 h). Linear regression was used to estimate the rate change of Salmonella in cut vegetables as a function of temperature and relative humidity (RH). R2 value of 0.85, 0.87, and 0.78 were observed for the rates of change in chard, broccoli, and red cabbage, respectively. The interaction between temperature and RH was significant in all sliced vegetables. Higher temperatures and RH values favored Salmonella growth. As temperature or RH decreased, the rate of S. enterica change varied by vegetable. The models developed here can improve risk management of Salmonella in fresh cut vegetables.


Assuntos
Beta vulgaris , Brassica , Salmonella enterica , Temperatura , Microbiologia de Alimentos , Contaminação de Alimentos/análise , Umidade , Contagem de Colônia Microbiana , Salmonella , Verduras
11.
Foodborne Pathog Dis ; 21(5): 339-352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422213

RESUMO

Clostridium botulinum is a foodborne pathogen responsible for severe neuroparalytic disease associated with the ingestion of pre-formed toxin in food, with processed meats and canned foods being the most affected. Control of this pathogen in meat products is carried out using the preservative sodium nitrite (NaNO2), which in food, under certain conditions, such as thermal processing and storage, can form carcinogenic compounds. Therefore, the objective was to use nanoemulsified essential oils (EOs) as natural antimicrobial agents, with the aim of reducing the dose of NaNO2 applied in mortadella. The antimicrobial activity of nanoemulsions prepared with mixtures of EOs of garlic, clove, pink pepper, and black pepper was evaluated on endospores and vegetative cells of C. botulinum and Clostridium sporogenes (surrogate model) inoculated in mortadella prepared with 50 parts per million NaNO2. The effects on the technological (pH, water activity, and color) and sensory characteristics of the product were also evaluated. The combinations of EOs and their nanoemulsions showed sporicidal effects on the endospores of both tested microorganisms, with no counts observed from the 10th day of analysis. Furthermore, bacteriostatic effects on the studied microorganisms were observed. Regarding the technological and sensorial characteristics of the product, the addition of the combined EOs had a negative impact on the color of the mortadella and on the flavor/aroma. Despite the strong commercial appeal of adding natural preservatives to foods, the effects on flavor and color must be considered. Given the importance of controlling C. botulinum in this type of product, as well as the reduction in the amount of NaNO2 used, this combination of EOs represents a promising antimicrobial alternative to this preservative, encouraging further research in this direction.


Assuntos
Clostridium botulinum , Clostridium , Produtos da Carne , Óleos Voláteis , Óleos Voláteis/farmacologia , Clostridium botulinum/efeitos dos fármacos , Produtos da Carne/microbiologia , Clostridium/efeitos dos fármacos , Microbiologia de Alimentos , Nitrito de Sódio/farmacologia , Emulsões , Humanos , Conservação de Alimentos/métodos , Esporos Bacterianos/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Paladar , Antibacterianos/farmacologia
13.
Int J Food Microbiol ; 413: 110577, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38262124

RESUMO

Norovirus (NoV) and hepatitis A virus (HAV) stand as the predominant agents associated with viral foodborne infections. Outbreaks have been documented to be caused by various types of food items, including fresh and/or frozen berries. Comprehensive data concerning crucial viral pathogens in berries remain limited and are not currently available in aggregate form. Consequently, the present study aimed to compile the existing information regarding the prevalence of NoV and HAV in this matrix. Records of foodborne viruses were systematically extracted from database repositories up to December 2022, adhering to PRISMA standards and were subjected to a multilevel random effect meta-analysis model to determine the mean occurrence rate of NoV and HAV. A high heterogeneity across studies was observed (I2 = 82 %), reflecting variations in the prevalence of sampling locations, years, berry types, and sample conditions, among other potential contributing factors. The prevalence of NoV and HAV in berries was calculated at 2.12 % (95 % CI 1.74-2.59 %), and no statistically differences were observed among the viral types or genogroup categories. However, it is important to clarify that this estimate should be taken with caution given the high heterogeneity. There was no discernible correlation between viral prevalence and any particular berry type. However, there was a temporal correlation observed with the year of sampling, revealing a significantly decreasing trend throughout the study period. A significant influence of the sample condition (fresh or frozen) was observed in relation to the prevalence of NoV GII and HAV. Overall higher viral prevalences were identified in berries originating from African countries as compared to those sourced from other continents. It was also noted that the prevalence of NoV GI was significantly higher in samples collected directly from farms compared to those obtained from retailers. The outcomes of this comprehensive meta-analysis propose that while viral contamination of berries is diminishing in more recent times, the prevalence remains substantial in certain African countries, having a significant risk for foodborne infections. It is imperative to implement intervention strategies in these regions to enhance product safety.


Assuntos
Vírus da Hepatite A , Norovirus , Vírus da Hepatite A/genética , Frutas , Norovirus/genética , Prevalência , Contaminação de Alimentos/análise
14.
Foods ; 12(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959118

RESUMO

A survey was performed to gather information on the processing steps, conditions, and practices employed by industries processing ready-to-eat (RTE) leafy vegetables in Argentina. A total of seven industries participated in the survey. A cluster analysis of the data obtained was performed to identify homogeneous groups among the participating industries. The data collected were used as inputs of two predictive microbiology models to estimate Salmonella concentrations after chlorine washing, during storage and distribution of final products, and to rank the different practices according to the final estimated Salmonella levels. Six different clusters were identified by evaluating the parameters, methods, and controls applied in each processing step, evidencing a great variability among industries. The disinfectant agent applied by all participating industries was sodium hypochlorite, though concentrations and application times differed among industries from 50 to 200 ppm for 30 to 110 s. Simulations using predictive models indicated that the reductions in Salmonella in RTE leafy vegetables would vary in the range of 1.70-2.95 log CFU/g during chlorine-washing depending on chlorine concentrations applied, washing times, and vegetable cutting size, which varied from 9 to 16 cm2 among industries. Moreover, Salmonella would be able to grow in RTE leafy vegetables during storage and distribution, achieving levels of up to 2 log CFU/g, considering the storage and transportation temperatures and times reported by the industries, which vary from 4 to 14 °C and from 18 to 30 h. These results could be used to prioritize risk-based sampling programs by Food Official Control or determine more adequate process parameters to mitigate Salmonella in RTE leafy vegetables. Additionally, the information gathered in this study is useful for microbiological risk assessments.

15.
Foods ; 12(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959134

RESUMO

The global coconut water market is projected to grow in the upcoming years, attributed to its numerous health benefits. However, due to its susceptibility to microbial contamination and the limitations of non-thermal decontamination methods, thermal treatments remain the primary approach to ensure the shelf-life stability and the microbiological safety of the product. In this study, the thermal inactivation of Listeria innocua, a Listeria monocytogenes surrogate, was evaluated in coconut water and in tryptone soy broth (TSB) under both isothermal (50-60 °C) and dynamic conditions (from 30 to 60 °C, with temperature increases of 0.5, 1 and 5 °C/min). Mathematical models were used to analyse the inactivation data. The Geeraerd model effectively described the thermal inactivation of L. innocua in both TSB and coconut water under isothermal conditions, with close agreement between experimental data and model fits. Parameter estimates and analysis revealed that acidified TSB is a suitable surrogate medium for studying the thermal inactivation of L. innocua in coconut water, despite minor differences observed in the shoulder length of inactivation curves, likely attributed to the media composition. The models fitted to the data obtained at isothermal conditions fail to predict L. innocua responses under dynamic conditions. This is attributed to the stress acclimation phenomenon that takes place under dynamic conditions, where bacterial cells adapt to initial sub-lethal treatment stages, leading to increased thermal resistance. Fitting the Bigelow model directly to dynamic data with fixed z-values reveals a three-fold increase in D-values with lower heating rates, supporting the role of stress acclimation. The findings of this study aid in designing pasteurization treatments targeting L. innocua in coconut water and enable the establishment of safe, mild heat treatments for refrigerated, high-quality coconut water.

16.
Heliyon ; 9(11): e21558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027952

RESUMO

Lactic Acid Bacteria play an important role in the milk fermentation processes of traditional cheeses and have become an important target for the development of novel cheese cultures because of their ability to confer health benefits. This study aimed to evaluate the probiotic potential of 12 Lactic Acid Bacteria (LAB) strains previously isolated and molecularly identified from an artisanal Colombian Double-Cream Cheese. Probiotic properties, including safety (hemolysis and sensibility to antibiotics), pH and bile salt tolerance, auto-aggregation, cell surface hydrophobicity, antibacterial activity, and exopolysaccharide production, were examined. None of the strains were hemolytic, and Pediococcus (16, 18) and Lactobacillus (28, 29) were found to be sensitive to all antibiotics. Moreover, all the strains tolerated pH (3.0, 6.5 and 8.0) and bile salt conditions (0.3, 0.6 and 1.0 % w/v). Pediococcus pentosaceus (16), Leuconostoc citreum (17), Pediococcus acidilactici (18), Enterococcus faecium (21,22), Enterococcus faecalis (24) and Limosilactobacillus fermentum (29) exhibited medium autoaggregation and affinity to chloroform. Six of the strains exhibited a ropy exopolysaccharide phenotype. Antibacterial activity against foodborne pathogens, Salmonella Typhimurium ATCC 14028, Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, was found to be strain dependent, with the strains 16, 18, 21, 26, 28 and 29 presenting a higher inhibition (>4 mm) against all of them. According to Principal Component Analysis, P. pentosaceus (16), Leu. mesenteroides (26), L. casei (28), L. fermentum (29), and E. faecium (21) showed strong probiotic properties. Our findings suggest that five strains out of the 12 sampled strains are potential probiotics that could be used in the processing of traditional dairy products on an industrial scale to improve their quality.

17.
Vector Borne Zoonotic Dis ; 23(11): 576-582, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695815

RESUMO

Background: The objective of this study was to isolate Staphylococcus spp. and to characterize the resistance profile in nasal samples from pigs slaughtered for consumption. Material and Methods: Intranasal swabs were collected from 100 pigs immediately after bleeding in a slaughterhouse located in the largest pork production region in Brazil, these samples were cultured and isolated to identify Staphylococcus spp. in coagulase positive (CoPS) and coagulase negative (CoNS) and molecular identification of Staphylococcus aureus and then subjected to the disk-diffusion test to identify the bacterial resistance profile and search for the mecA gene. Results: Of the 100 samples collected, it was possible to isolate 79 Staphylococcus spp., of these, 72.15% were classified as CoNS and 27.85% of the isolates classified as CoPS. Among the CoPS isolates, 77.27% were identified as S. aureus. Through the disk-diffusion test, it was possible to verify isolates resistant to clindamycin and erythromycin (98.73%), chloramphenicol (93.67%), and doxycycline (89.87%). There was amplification of the mecA gene in 30.38% of Staphylococcus spp. Conclusion: The results of this study highlight the need for the careful use of antibiotics in swine production, in addition to aiming at continuous surveillance in relation to the rate of multiresistant microorganisms within these environments, focused on large industrial centers; such results also indicate the importance of understanding, through future studies, possible pathways to transmission of these microorganisms directly, or indirectly, through meat products derived from these pigs, which can be considered neglected diffusers of variants of Staphylococcus spp. resistant to antibiotics or carriers of important resistance genes related to One Health.


Assuntos
Infecções Estafilocócicas , Doenças dos Suínos , Animais , Suínos , Staphylococcus/genética , Staphylococcus aureus/genética , Coagulase/metabolismo , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana/veterinária , Antibacterianos/farmacologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Doenças dos Suínos/epidemiologia
18.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516449

RESUMO

Street foods play important socioeconomic and cultural roles and are popular worldwide. In addition to providing convenient and low-cost meals for urban populations, street food offers an essential source of income for vendors, especially women, and it can reflect traditional local culture, which is an important attraction for tourists. Despite these benefits, the microbiological safety of street food has become a worldwide concern because it is often prepared and sold under inadequate safety conditions, without legal control and sanitary surveillance. Consequently, high counts of fecal indicator bacteria and several foodborne pathogens have been detected in street foods. This review provides insight into the microbiology of street food, focus on the associated microbiological safety aspects and main pathogens, and the global status of this important economic activity. Furthermore, the need to apply molecular detection rather than traditional culture-based methods is discussed to better understand the actual risks of microbial infection associated with street foods. Recognition is always the first step toward addressing a problem.


Assuntos
Microbiologia de Alimentos , Alimentos , Humanos , Feminino , Bactérias/genética , Comércio , População Urbana , Inocuidade dos Alimentos , Manipulação de Alimentos
19.
Rev Argent Microbiol ; 55(4): 378-386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37302907

RESUMO

The use of lactic acid bacteria (LAB) in foods as biocontrol agents against foodborne pathogens has become increasingly known. Under the premise that controlling the adhesion of microorganisms to food contact surfaces is an essential step for meeting the goals of food processing, the aim of this work was to investigate the inhibitory and anti-biofilm effectiveness of Lactobacillus rhamnosus GG (ATCC 53103) and Lactobacillus casei (ATCC 393) against Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. Lactobacillus strains (108CFU/ml) and pathogens (104CFU/ml) were evaluated to monitor LAB anti-adhesive and antibiofilm effect, in two main scenarios: (i) co-adhesion and (ii) pathogen incorporation to stainless steel surfaces with a protective biofilm of Lactobacillus cells. In (i) the predominant effect was observed in L. rhamnosus against S. enterica and L. monocytogenes, whereas in (ii) both LAB significantly reduced the number of pathogenic adherent cells. The effect of pre-established LAB biofilms was more successful in displacing the three pathogens than when they were evaluated under co-adhesion. These findings show that both LAB can be considered good candidates to prevent or inhibit the adhesion and colonization of L. monocytogenes, S. enterica and E. coli O157:H7 on surfaces and conditions of relevance for juice processing industries, offering alternatives for improving the safety and quality of fruit-based products.


Assuntos
Escherichia coli O157 , Lactobacillales , Listeria monocytogenes , Microbiologia de Alimentos , Biofilmes , Manipulação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA