Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2310157121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102539

RESUMO

The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.


Assuntos
Carbono , Conservação dos Recursos Naturais , Florestas , Brasil/epidemiologia , Carbono/metabolismo , Humanos , Árvores/crescimento & desenvolvimento , Ciclo do Carbono
2.
Sci Total Environ ; 854: 158508, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063938

RESUMO

Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.


Assuntos
Ascomicetos , Microbiota , Solo/química , Florestas , Bactérias , Microbiologia do Solo
3.
Am J Bot ; 107(12): 1622-1634, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274437

RESUMO

PREMISE: Lianas are intriguing forest components in the tropics worldwide. They are characterized by thin and flexible stems, which have been related to a unique stem anatomy. Here, we hypothesized that the anatomical diversity of lianas, varying in shapes, proportions, and dimensions of tissues and cell types, would result in different stem bending stiffnesses across species. To test this hypothesis, we chose four abundant liana species of central Amazonia belonging to the monophyletic tribe Bignonieae (Bignoniaceae) and compared their basal stems for their anatomical architectures and bending properties. METHODS: Measurements of anatomical architecture and bending stiffness (structural Young's modulus) included light microscopy observations and three-point bending tests, which were performed on basal stems of eight individuals from four Bignonieae species. All analyses, including comparisons among species and relationships between stem stiffness and anatomical architecture, were performed using linear models. RESULTS: Although the anatomical architecture of each species consists of different qualitative and quantitative combinations of both tissues and cell types in basal stems, all species analyzed showed similarly lower bending stiffnesses. This similarity was shown to be directly related to high bark contribution to the second moment of area, vessel area and ray width. CONCLUSIONS: Similar values of stem bending stiffness were encountered in four liana species analyzed despite their variable anatomical architectures. This pattern provides new evidence of how different quantitative combinations of tissue and cell types in the basal stems of lianas can generate similarly low levels of stiffness in a group of closely related species.


Assuntos
Bignoniaceae , Caules de Planta
4.
Remote Sens Ecol Conserv ; 6(2): 141-152, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32617175

RESUMO

Protected areas in Guatemala provide habitat for diverse tropical ecosystems, contain ancient archeological sites, sequester carbon, and support economic activity through eco-tourism. However, many of the forests in these protected areas have been converted to other uses or degraded by human activity, and therefore are considered "paper parks". In this study, we analyzed time series of satellite data to monitor deforestation, degradation, and natural disturbance throughout Guatemala from 2000 to 2017. A recently developed methodology, Continuous Degradation Detection (CODED), was used to detect forest disturbances of varying size and magnitude. Through sample-based statistical inference, we estimated that 854 137 ha (± 83 133 ha) were deforested and 1 012 947 ha (±139 512 ha) of forest was disturbed but not converted during our study period. Forest disturbance in protected areas ranged from under 1% of a park's area to over 95%. Our estimate of the extent of deforestation is similar to previous studies, however, degradation and natural disturbance affect a larger area. These results suggest that the total amount of forest disturbance can be significantly underestimated if degradation and natural disturbance are not taken into account. As a consequence, we found that the protected areas of Guatemala are more affected by disturbance than previously realized.

5.
Ecol Appl ; 28(8): 1998-2010, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29999560

RESUMO

Selective logging remains a widespread practice in tropical forests, yet the long-term effects of timber harvest on juvenile tree (i.e., sapling) recruitment across the hundreds of species occurring in most tropical forests remain difficult to predict. This uncertainty could potentially exacerbate threats to some of the thousands of timber-valuable tree species in the Amazon. Our objective was to determine to what extent long-term responses of tree species regeneration in logged forests can be explained by their functional traits. We integrate functional trait data for 13 leaf, stem, and seed traits from 25 canopy tree species with a range of life histories, such as the pioneer Goupia glabra and the shade-tolerant Iryanthera hostmannii, together with over 30 yr of sapling monitoring in permanent plots spanning a gradient of harvest intensity at the Paracou Forest Disturbance Experiment (PFDE), French Guiana. We anticipated that more intensive logging would increase recruitment of pioneer species with higher specific leaf area, lower wood densities, and smaller seeds, due to the removal of canopy trees. We define a recruitment response metric to compare sapling regeneration to timber harvest intensity across species. Although not statistically significant, sapling recruitment decreased with logging intensity for eight of 23 species and these species tended to have large seeds and dense wood. A generalized linear mixed model fit using specific leaf area, seed mass, and twig density data explained about 45% of the variability in sapling dynamics. Effects of specific leaf area outweighed those of seed mass and wood density in explaining recruitment dynamics of the sapling community in response to increasing logging intensity. The most intense treatment at the PFDE, which includes stand thinning of non-timber-valuable adult trees and poison-girdling for competitive release, showed evidence of shifting community composition in sapling regeneration at the 30-yr mark, toward species with less dense wood, lighter seeds, and higher specific leaf area. Our results indicate that high-intensity logging can have lasting effects on stand regeneration dynamics and that functional traits can help simplify general trends of sapling recruitment for highly diverse logged tropical forests.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores/fisiologia , Guiana Francesa , Características de História de Vida , Dinâmica Populacional
6.
Environ Pollut ; 236: 862-870, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29475173

RESUMO

Mercury, a toxic trace metal, has been used extensively as an inexpensive and readily available method of extracting gold from fine-grained sediment. Worldwide, artisanal mining is responsible for one third of all mercury released into the environment. By testing bat hair from museum specimens and field collected samples from areas both impacted and unimpacted by artisanal gold mining in Perú, we show monomethylmercury (MMHg) has increased in the last 100 years. MMHg concentrations were also greatest in the highest bat trophic level (insectivores), and in areas experiencing extractive artisanal mining. Reproductive female bats had higher MMHg concentrations, and both juvenile and adult bats from mercury contaminated sites had more MMHg than those from uncontaminated sites. Bats have important ecological functions, providing vital ecosystem services such as pollination, seed dispersal, and insect control. Natural populations can act as environmental sentinels and offer the chance to expand our understanding of, and responses to, environmental and human health concerns.


Assuntos
Quirópteros/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Intoxicação por Metais Pesados/veterinária , Mercúrio/metabolismo , Mineração , Animais , Ecologia , Ecossistema , Feminino , Ouro , Cabelo/química , Masculino , Mercúrio/análise , Peru
7.
J Appl Ecol ; 52(2): 379-388, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25954054

RESUMO

Over 20% of the world's tropical forests have been selectively logged, and large expanses are allocated for future timber extraction. Reduced-impact logging (RIL) is being promoted as best practice forestry that increases sustainability and lowers CO2 emissions from logging, by reducing collateral damage associated with timber extraction. RIL is also expected to minimize the impacts of selective logging on biodiversity, although this is yet to be thoroughly tested.We undertake the most comprehensive study to date to investigate the biodiversity impacts of RIL across multiple taxonomic groups. We quantified birds, bats and large mammal assemblage structures, using a before-after control-impact (BACI) design across 20 sample sites over a 5-year period. Faunal surveys utilized point counts, mist nets and line transects and yielded >250 species. We examined assemblage responses to logging, as well as partitions of feeding guild and strata (understorey vs. canopy), and then tested for relationships with logging intensity to assess the primary determinants of community composition.Community analysis revealed little effect of RIL on overall assemblages, as structure and composition were similar before and after logging, and between logging and control sites. Variation in bird assemblages was explained by natural rates of change over time, and not logging intensity. However, when partitioned by feeding guild and strata, the frugivorous and canopy bird ensembles changed as a result of RIL, although the latter was also associated with change over time. Bats exhibited variable changes post-logging that were not related to logging, whereas large mammals showed no change at all.Indicator species analysis and correlations with logging intensities revealed that some species exhibited idiosyncratic responses to RIL, whilst abundance change of most others was associated with time.Synthesis and applications. Our study demonstrates the relatively benign effect of reduced-impact logging (RIL) on birds, bats and large mammals in a neotropical forest context, and therefore, we propose that forest managers should improve timber extraction techniques more widely. If RIL is extensively adopted, forestry concessions could represent sizeable and important additions to the global conservation estate - over 4 million km2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA