Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
J Leukoc Biol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385601

RESUMO

Neutrophils are the innate immune system's first line of defense, and their storage organelles are essential to their function. The storage organelles are divided into three different granule types named azurophilic, specific, and gelatinase granules, besides a fourth component called secretory vesicles. The isolation of neutrophil's granules is challenging, and the existing procedures rely on large sample volumes, about 400 mL of peripheral blood, precluding the use of multiple biological and technical replicates. Therefore, the aim of this study was to develop a miniaturized isolation of neutrophil granules (MING) method, using biochemical assays, mass spectrometry-based proteomics and a machine learning approach to investigate the protein content of these organelles. Neutrophils were isolated from 40 mL of blood collected from three apparently healthy volunteers and disrupted using nitrogen cavitation; the organelles were fractionated with a discontinuous 3-layer Percoll density gradient. The isolation was proven successful and allowed for a reasonable separation of neutrophil's storage organelles using a gradient approximately 37 times smaller than the methods described in the literature. Moreover, mass spectrometry-based proteomics identified 368 proteins in at least 3 of the 5 analyzed samples, and using a machine learning strategy aligned with markers from the literature, the localization of 50 proteins was predicted with confidence. When using markers determined within our dataset by a clusterization tool, the localization of 348 proteins was confidently determined. Importantly, this study was the first to investigate the proteome of neutrophil granules using technical and biological replicates, creating a reliable database for further studies.

2.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930823

RESUMO

Propolis is a resinous bee product with a very complex composition, which is dependent upon the plant sources that bees visit. Due to the promising antimicrobial activities of red Brazilian propolis, it is paramount to identify the compounds responsible for it, which, in most of the cases, are not commercially available. The aim of this study was to develop a quick and clean preparative-scale methodology for preparing fractions of red propolis directly from a complex crude ethanol extract by combining the extractive capacity of counter-current chromatography (CCC) with preparative HPLC. The CCC method development included step gradient elution for the removal of waxes (which can bind to and block HPLC columns), sample injection in a single solvent to improve stationary phase stability, and a change in the mobile phase flow pattern, resulting in the loading of 2.5 g of the Brazilian red propolis crude extract on a 912.5 mL Midi CCC column. Three compounds were subsequently isolated from the concentrated fractions by preparative HPLC and identified by NMR and high-resolution MS: red pigment, retusapurpurin A; the isoflavan 3(R)-7-O-methylvestitol; and the prenylated benzophenone isomers xanthochymol/isoxanthochymol. These compounds are markers of red propolis that contribute to its therapeutic properties, and the amount isolated allows for further biological activities testing and for their use as chromatographic standards.


Assuntos
Distribuição Contracorrente , Própole , Própole/química , Distribuição Contracorrente/métodos , Cromatografia Líquida de Alta Pressão , Brasil , Animais , Fracionamento Químico/métodos , Abelhas/química
3.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
4.
Environ Res ; 250: 118529, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395335

RESUMO

Due to adverse impact of the global warming on hydrological resources, we intended to document the hydrogeochemical evolutions of surface and groundwater at tropical central-south Mexico in terms of seasonality of rock-water interaction, precipitation/evaporation variation and moisture source by evaluating the major ion chemistry in Piper and Gibbs plots, Durov diagram and through estimation of the chloro-alkaline indices as well as assessing the stable isotope compositions (δ18O and δ2H) in samples from different seasons of a year. Surface water of the Lake Coatetelco shifted from mostly Ca-Mg-HCO3 facies in wet summer-autumn to Na-HCO3-Cl facies in the dry spring due to elevated Na, Cl and HCO3. Greater evaporation in spring led to a maximum δ18O enrichment of ca.7‰ compared to the other seasons, and much depleted deuterium excess (-40.92‰ to -39.20‰). Interaction of the lake water with subsurface carbonate lithologies, and comparable isotopic compositions reflected the enhanced interaction between the surface water body and aquifers in the wet autumn. Effect of seasonality, however, was unclear on the groundwater facies, and its heterogenous composition (Ca-Mg-HCO3, Na-HCO3-Cl and Na-HCO3) reflected the interactions with different lithologies. Fractionations in isotope compositions of the groundwater were caused from recharge at different elevations, seasonality of moisture sources and moisture recycling. The water-mineral saturation index was an efficient proxy of seasonality as the lake water and groundwater (avg SIcalcite > 0.5) of the dry autumn were saturated with calcite. This vital information about carbonate precipitation, pCO2 and chemical facies would be useful for the better interpretation of paleoclimate archives in this region.


Assuntos
Deutério , Água Subterrânea , Isótopos de Oxigênio , Estações do Ano , México , Água Subterrânea/química , Água Subterrânea/análise , Isótopos de Oxigênio/análise , Deutério/análise , Monitoramento Ambiental/métodos , Lagos/química
5.
Chemosphere ; 352: 141348, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340998

RESUMO

The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.


Assuntos
Ecossistema , Mercúrio , Água/análise , Ouro/análise , Solo/química , Colômbia , Mercúrio/análise , Bactérias/genética , Mineração , Monitoramento Ambiental/métodos
6.
Braz J Microbiol ; 55(1): 515-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231376

RESUMO

The surge in multidrug-resistant pathogens worldwide has jeopardized the clinical efficiency of many current antibiotics. This problem steered many researchers in their quest to discover new effective antimicrobial agents from natural origins including plants or their residing endophytes. In this work, we aimed to identify the endophytic fungi derived from Hedera helix L. and investigate their potential antimicrobial activity. Bioguided fractionation approach was conducted to isolate the pure compounds from the most active fungal fraction. Out of a total of six different isolated endophytic fungal strains, only Aspergillus cejpii showed the highest activity against all tested microbial strains. The most active fraction was the dichloromethane/methanol fraction (DCM:MeOH), where it showed significant activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Serratia marcescens, Acinetobacter baumannii, Salmonella typhi, and three drug-resistant clinical isolate strains including Methicillin-resistant Staphylococcus aureus (MRSA, H1), Pseudomonas aeruginosa (PS 16), and Acinetobacter baumannii (ACT 322) using tetracyline and kanamycin as the control antibiotics. Bioguided fractionation of the active fraction led to the isolation of the γ-butenolide, spiculisporic acid. Structure elucidation was carried out using 1H and 13C-NMR spectroscopic analysis. The compound showed good antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 3.9 to 31.25 µg/mL against all tested strains. Gas chromatography coupled to mass spectrometry (GC-MS) profiling was also carried out to identify the metabolites in the microbial crude extract. In conclusion, endophytic fungi, Aspergillus cejpii, isolated from Hedera helix L. roots showed promising antimicrobial activity which merits further in-depth investigations for potential utilization as a source of new antibiotics in the future. It can also be considered as a novel source for spiculisporic acid.


Assuntos
Anti-Infecciosos , Aspergillus , Hedera , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Fungos
7.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258414

RESUMO

Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD.Communicated by Ramaswamy H. Sarma.

8.
Clin Transl Oncol ; 26(5): 1203-1208, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38017238

RESUMO

BACKGROUND: Lung SBRT has a well-defined role in the treatment of patients with early stage non-small cell lung cancer who are not surgical candidates or refuse surgery. Biologically effective dose (BED) of greater than or equal to 100 Gy has been recommended. However, optimal fractionation remains unclear. Our objective was analyze patients treated with lung SBRT in our institution and evaluate outcomes according prescribed dose. PATIENTS AND METHODS: One hundred nine patients with early non-small cell lung cancer and treated with lung SBRT were retrospectively analyzed. Differences between dose received, local control, and survival were evaluated. For comparison of BEDs, the prescribed dose for SBRT was stratified according to two groups: high (BED > 120 Gy) and low (BED < 120 Gy). RESULTS: A relationship between mortality and total dose (54.7 Gy ± 4.8) was observed. Significantly worse survival was observed for patients with higher total doses (p < 0.003). It was found that patients receiving BED > 120 had increased mortality compared to patients receiving BED < 120 (p = 0.021). It was observed mean dose/fraction 12.6 Gy/f was a protective factor and decreased the probability of death. CONCLUSION: Our data suggest that mean total dose lower 54 and a calculated BED < 120 Gy is the optimal. Further prospective data are needed to confirm these results and determine the optimal dose fractionation scheme as a function of tumor size and location of volume.

9.
J Biomol Struct Dyn ; 42(4): 1692-1710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37232450

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Conventional antithrombotic therapy has reported hemorrhagic accidents. Ethnobotanical and scientific reports point to Cnidoscolus aconitifolius as an antithrombotic adjuvant. Previously, C. aconitifolius leaves ethanolic extract displayed antiplatelet, anticoagulant, and fibrinolytic activities. This work aimed to identify compounds from C. aconitifolius with in vitro antithrombotic activity through a bioassay-guided study. Antiplatelet, anticoagulant, and fibrinolytic tests guided the fractionation. Ethanolic extract was subjected to a liquid-liquid partitioning, followed by vacuum liquid, and size exclusion chromatography to obtain the bioactive JP10B fraction. The compounds were identified through UHPLC-QTOF-MS, and their molecular docking, bioavailability, and toxicological parameters were determined computationally. Kaempferol-3-O-glucorhamnoside and 15(S)-HPETE were identified; both showed affinity for antithrombotic targets, low absorption, and safety for human consumption. Further in vitro and in vivo evaluations will better understand their antithrombotic mechanism. This bioassay-guided fractionation demonstrated that C. aconitifolius ethanolic extract has antithrombotic compounds.Communicated by Ramaswamy H. Sarma.


Assuntos
Fibrinolíticos , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Fibrinolíticos/farmacologia , Disponibilidade Biológica , Etanol/química , Anticoagulantes/farmacologia
10.
J Sci Food Agric ; 104(6): 3185-3196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151774

RESUMO

In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Queijo , Soro do Leite , Proteínas do Soro do Leite/química , Soro do Leite/metabolismo , Transglutaminases/metabolismo , Lactose , Filtração/métodos , Queijo/análise
11.
Trop Anim Health Prod ; 55(5): 288, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578575

RESUMO

During the dry and rainy seasons of the Northeastern Zone of Peru, a chemical characterization of five species of bamboo prevalent in the area (Guadua lynnclarkiae, G. takahashiae, Bambusa vulgaris, G. weberbaueri, and Dendrocalamus asper) was conducted. Then, the effect of supplementing bamboo leaves (0, 20, and 40% inclusion of D. asper) on the intake and live weight gain of 18 Gyr × Holstein heifers was evaluated for 28 days. Among the species evaluated, D. asper has the greatest crude protein (CP) concentration (158-166 g/kg Dry matter- DM), post-ruminal CP supply (127 g/kg DM), and in vitro organic matter digestibility (444-456 g/kg DM) but similar concentrations of crude ash (124 g/kg DM), calcium (2.4-2.8 mg/g), phosphorus (0.7-2.1 mg/g), protein fractions A, B1, B2, B3, C (45, 5, 35, 56, and 17g/kg DM, respectively), rumen-undegraded CP (31% CP), neutral detergent fiber (NDF, 685g/kg DM), and acid detergent fiber (ADF, 357 g/kg DM) than the other species evaluated. Dry matter intake was higher in the control treatment and in the 20% bamboo leaf inclusion treatment than in the 40% bamboo inclusion treatment. Intake of CP and NDF decreased with the increase in bamboo inclusion. Despite the differences in DM, CP, and NDF intake, the live weight gain remained similar across treatments. However, there was a greater feed conversion in the 20% bamboo leaf inclusion treatment. During the dry season, bamboo leaves can be used as an alternative supplement at a maximum inclusion of 20% without affecting the live weight gain.


Assuntos
Fibras na Dieta , Digestão , Bovinos , Animais , Feminino , Peru , Fibras na Dieta/metabolismo , Ração Animal/análise , Detergentes/metabolismo , Aumento de Peso , Dieta/veterinária , Rúmen/metabolismo , Fermentação
12.
Chemosphere ; 341: 139948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648170

RESUMO

Environmental impacts caused by mining activities (mainly tailings and effluents) are presenting serious challenges for humanity worldwide. In Brazil, clay extraction activities in the Ceramic District of Santa Gertrudes (CDSG) have led to the formation of abandoned drainage wells causing environmental and human health concerns. In the 90's, it was discovered that in one of the production areas, known as the region of the lakes of Santa Gertrudes, several ceramic industries had contaminated lakes created by abandoned clay pits with industrial effluents containing toxic metals. In the present study, analysis of total and dissolved concentrations of Al, Cd, Co, Cu, Mn, Ni, Pb and Zn in the waters of these lakes were combined with the diffusive gradients in thin films (DGT) technique to assess the lability and bioavailability of the target elements, representing one of the first studies to investigate the real environmental impact of contamination caused by ceramic production wastes to an aquatic system. Furthermore, based on the total concentrations and main physicochemical characteristics of each lake, a speciation analysis was performed using the MINTEQ software which data was compared with other surface water systems. The results indicated the presence of metals associated with ceramic residues in total, dissolved and labile fractions. It was verified that Zn, Ni and Cu were the only target metals found in labile form and according to speciation were present in the form of "free" ions, and thus may present risk in terms of bioavailability, although the majority of the total concentrations are within the limits established by the national environmental agency.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Lagos/química , Argila , Brasil , Metais/análise , Mineração , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise
13.
J Biol Inorg Chem ; 28(7): 655-667, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646892

RESUMO

Isotope fractionation of metals/metalloids in biological systems is an emerging research area that demands the application of state-of-the-art analytical chemistry tools and provides data of relevance to life sciences. In this work, Se uptake and Se isotope fractionation were measured during the biofortification of baker's yeast (Saccharomyces cerevisiae)-a product widely used in dietary Se supplementation and in cancer prevention. On the other hand, metabolic labeling with 15N is a valuable tool in mass spectrometry-based comparative proteomics. For Se-yeast, such labeling would facilitate the assessment of Se impact on yeast proteome; however, the question arises whether the presence of 15N in the microorganisms affects Se uptake and its isotope fractionation. To address the above-mentioned aspects, extracellularly reduced and cell-incorporated Se fractions were analyzed by hydride generation-multi-collector inductively coupled plasma-mass spectrometry (HG MC ICP-MS). It was found that extracellularly reduced Se was enriched in light isotopes; for cell-incorporated Se, the change was even more pronounced, which provides new evidence of mass fractionation during biological selenite reduction. In the presence of 15N, a weaker preference for light isotopes was observed in both, extracellular and cell-incorporated Se. Furthermore, a significant increase in Se uptake for 15N compared to 14N biomass was found, with good agreement between hydride generation microwave plasma-atomic emission spectrometry (HG MP-AES) and quadrupole ICP-MS results. Biological effects observed for heavy nitrogen suggest 15N-driven alteration at the proteome level, which facilitated Se access to cells with decreased preference for light isotopes.


Assuntos
Saccharomyces cerevisiae , Selênio , Biofortificação , Proteoma , Transporte Biológico
14.
Front Plant Sci ; 14: 1070472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409289

RESUMO

Chenopodium quinoa Willd. is a native species that originated in the High Andes plateau (Altiplano) and its cultivation spread out to the south of Chile. Because of the different edaphoclimatic characteristics of both regions, soils from Altiplano accumulated higher levels of nitrate (NO3-) than in the south of Chile, where soils favor ammonium (NH4 +) accumulation. To elucidate whether C. quinoa ecotypes differ in several physiological and biochemical parameters related to their capacity to assimilate NO3- and NH4 +, juvenile plants of Socaire (from Altiplano) and Faro (from Lowland/South of Chile) were grown under different sources of N (NO3- or NH4 +). Measurements of photosynthesis and foliar oxygen-isotope fractionation were carried out, together with biochemical analyses, as proxies for the analysis of plant performance or sensitivity to NH4 +. Overall, while NH4 + reduced the growth of Socaire, it induced higher biomass productivity and increased protein synthesis, oxygen consumption, and cytochrome oxidase activity in Faro. We discussed that ATP yield from respiration in Faro could promote protein production from assimilated NH4 + to benefit its growth. The characterization of this differential sensitivity of both quinoa ecotypes for NH4 + contributes to a better understanding of nutritional aspects driving plant primary productivity.

15.
Microorganisms ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37512920

RESUMO

Inoculation with phosphate-solubilizing bacteria (PSB) and the application of phosphorus (P) sources can improve soil P availability, enhancing the sustainability and efficiency of agricultural systems. The implementation of this technology in perennial grasses, such as Kikuyu grass, for cattle feed in soils with high P retention, such as Andisols, has been little explored. The objective of this study was to evaluate the productive response of Kikuyu grass and soil P dynamics to BSF inoculation with different P sources. The experiment was conducted on a Kikuyu pasture, which was evaluated for 18 months (September 2020 to March 2022). Three P fertilizers with different solubility levels were applied: diammonium phosphate (DAP) (high-solubility), rock phosphate (RP), and compost (OM) (low-solubility). Moreover, the inoculation of a PSB consortium (Azospirillum brasilense D7, Rhizobium leguminosarum T88 and Herbaspirillum sp. AP21) was tested. Inoculation with PSB and fertilization with rock phosphate (RP) increased soil labile P and acid phosphomonoesterase activity. Increased grass yield and quality were related with higher soil inorganic P (Pi) availability. This study validated, under field conditions, the benefits of PSB inoculation for soil P availability and Kikuyu grass productivity.

16.
Phytochem Anal ; 34(8): 970-983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37488746

RESUMO

INTRODUCTION: Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE: The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY: Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS: Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS: These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.


Assuntos
Annona , Diabetes Mellitus Tipo 2 , Hipoglicemiantes/farmacologia , Antioxidantes/análise , Annona/química , Cromatografia em Camada Fina/métodos , alfa-Glucosidases , Extratos Vegetais/química , alfa-Amilases
17.
BMC Health Serv Res ; 23(1): 592, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291564

RESUMO

BACKGROUND: This study aims to evaluate whether hypofractionated radiotherapy (HYPOFRT) is a cost-effective strategy than conventional fractionated radiotherapy (CFRT) for early-stage glottic cancer (ESGC) in the Brazilian public and private health systems. METHODS: Adopting the perspective of the Brazilian public and private health system as the payer, a Markov model with a lifetime horizon was built to delineate the health states for a cohort of 65-year-old men after with ESGC treated with either HYPOFRT or CFRT. Probabilities of controlled disease, local failure, distant metastasis, and death and utilities scores were extracted from randomized clinical trials. Costs were based on the public and private health system reimbursement values. RESULTS: In the base case scenario, for both the public and private health systems, HYPOFRT dominated CFRT, being more effective and less costly, with a negative ICER of R$264.32 per quality-adjusted life-year (QALY) (public health system) and a negative ICER of R$2870.69/ QALY (private health system). The ICER was most sensitive to the probability of local failure, controlled disease, and salvage treatment costs. For the probabilistic sensitivity analysis, the cost-effectiveness acceptability curve indicates that there is a probability of 99.99% of HYPOFRT being cost-effective considering a willingness-to-pay threshold of R$2,000 ($905.39) per QALY (public sector) and willingness-to-pay threshold of R$16,000 ($7243.10) per QALY (private sector). The results were robust in deterministic and probabilistic sensitivity analyses. CONCLUSIONS: Considering a threshold of R$ 40,000 per QALY, HYPOFRT was cost-effective compared to CFRT for ESGC in the Brazilian public health system. The Net Monetary Benefit (NMB) is approximately 2,4 times (public health system) and 5,2 (private health system) higher for HYPOFRT than CFRT, which could open the opportunity of incorporating new technologies.


Assuntos
Neoplasias Laríngeas , Masculino , Humanos , Idoso , Análise Custo-Benefício , Brasil/epidemiologia , Neoplasias Laríngeas/radioterapia , Fracionamento da Dose de Radiação , Anos de Vida Ajustados por Qualidade de Vida
18.
J Agric Food Chem ; 71(24): 9201-9212, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289784

RESUMO

This review addresses the possibilities of using supercritical carbon dioxide (SC-CO2) in the flavor industry in extraction and fractionation processes and its use as a reaction medium to generate aroma esters. The advantages and disadvantages are presented, comparing SC-CO2 processing with traditional methods. The most distinguishable features of SC-CO2 include mild reaction conditions, time savings, fewer toxicity concerns, higher sustainability, and the possibility of modulating solvent selectivity according to the process conditions (such as pressure and temperature). Thus, this review indicates the potential of using SC-CO2 to obtain a high selectivity of compounds that can be applied in aroma technology and related fields.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Odorantes , Solventes , Tecnologia , Fracionamento Químico , Cromatografia com Fluido Supercrítico/métodos
19.
Biotechnol J ; 18(8): e2200542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148557

RESUMO

A modification of the conventional batch organosolv process is proposed in a way where the solid biomass remains inside a basket, physically separated from the liquid phase, with the vapor promoting the fractionation of the biomass and the extracted compounds and fragments being washed down to the liquid phase. The modified organosolv process applied to sugarcane bagasse (SB-M) delivers a rich cellulosic solid phase that after enzymatic hydrolysis leads to a hydrolyzed with approximately 100 g L-1 of glucose. At the same enzymatic hydrolysis conditions, the conventional organosolv process (SB-C) delivers a hydrolyzed with 80 g L-1 of glucose, while the autohydrolysis process (SB-A) leads to 55 g L-1 of glucose. These different results are related to the cellulose content: SB-M (70%), SB-C (57%), e SB-A (44%), as well the reduced lignin content in the SB-M. The novelty of this study is the confirmation that it is possible to degrade lignin from sugarcane bagasse and simultaneously remove its fragments from the cellulose fibers in a batch reactor containing an internal basket. This study describes a simple and rapid protocol for the isolation of the main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin), which may lead to the study of new catalysts for the chemical transformation of these components separately or simultaneously to the step of pretreatment.


Assuntos
Celulose , Saccharum , Celulose/metabolismo , Lignina/metabolismo , Saccharum/química , Saccharum/metabolismo , Glucose/metabolismo , Hidrólise
20.
Food Res Int ; 169: 112931, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254357

RESUMO

Colombian purple corn Zea mays L. by-products have been chemically characterized. To achieve this, after Amberlite XAD-7 purification and Sephadex LH-20 fractionation, the accurate anthocyanin and flavonol profile using UHPL-DAD-ESI-MS, total monomeric anthocyanin (TMA), polyphenols using Folin-Ciocalteau reduction capacity (FCRC), and antioxidant activity (DPPH and TEAC) of each fraction were performed. Cob and leaves illustrated a more complete flavonoid profile and a higher content of anthocyanins and flavonols, strongly related to the highest reducing power and radical scavenging activity compared to grains. Furthermore, the most antioxidant fractions corresponded to the higher molecular weight compounds. The cob and leaves were enriched in cyanidin-3-O-glucoside, cyanidin-3-O-malonyl-hexoside, and peonidin-3-O-glucoside, peonidin-3-O-(6''-malonyl-glucoside). The purification and fractionation allowed us to establish the chemical and antioxidant characterization, and the resulting revalorization, of purple corn by-products for the first time, and to have available pure fractions of Zea mays L. for a wide diversity of industries.


Assuntos
Antocianinas , Zea mays , Antocianinas/análise , Zea mays/química , Antioxidantes/análise , Colômbia , Flavonóis , Glucosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA