RESUMO
Plant defense and adaptation to adverse environmental conditions rely on gene expression control, such as mRNA transcription, processing, stability, and translation. Sudden temperature changes are common in the era of global warming; thus, understanding plant acclimation responses at the molecular level becomes imperative. mRNA translation initiation regulation has a pivotal role in achieving the synthesis of the appropriate battery of proteins needed to cope with temperature stress. In this study, we analyzed the role of translation initiation factors belonging to the eIF4E family in Arabidopsis acclimation to cold temperatures and freezing tolerance. Using knockout (KO) and overexpressing mutants of AteIF4E1 or AteIF(iso)4E, we found that AteIF4E1 but not AteIF(iso)4E overexpressing lines displayed enhanced tolerance to freezing without previous acclimation at 4°C. However, KO mutant lines, eif(iso)4e-1 and eif4e1-KO, were more sensitive to the stress. Cold acclimation in wild-type plants was accompanied by increased levels of eIF4E1 and eIF(iso)4E transcript levels, polysomes (P) enrichment, and shifts of these factors from translationally non-active to active fractions. Transcripts, previously found as candidates for eIF(iso)4E or eIF4E1 selective translation, changed their distribution in both P and total RNA in the presence of cold. Some of these transcripts changed their polysomal distribution in the mutant and one eIF4E1 overexpressing line. According to this, we propose a role of eIF4E1 and eIF(iso)4E in cold acclimation and freezing tolerance by regulating the expression of stress-related genes.
RESUMO
Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival.
Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Membrana Celular/enzimologia , Temperatura Baixa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Congelamento , Cinética , Fluidez de Membrana , Biossíntese de Proteínas , Transcrição GênicaRESUMO
Abstract Alfalfa (Medicago sativa L.) is an important perennial forage, with high nutritional value, which is widely grown in the world. Because of low freezing tolerance, its distribution and production are threatened and limited by winter weather. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed transcriptome sequencing analysis under cold (4 °C) and freezing (-8 °C) stresses. More than 66 million reads were generated, and we identified 5767 transcripts differentially expressed in response to cold and/or freezing stresses. These results showed that these genes were mainly classified as response to stress, transcription regulation, hormone signaling pathway, antioxidant, nodule morphogenesis, etc., implying their important roles in response to cold and freezing stresses. Furthermore, nine CBF transcripts differentially expressed were homologous to CBF genes of Mt-FTQTL6 site, conferring freezing tolerance in M. truncatula, which indicated that a genetic mechanism controlling freezing tolerance was conservative between M. truncatula and M. sativa. In summary, this transcriptome dataset highlighted the gene regulation response to cold and/or freezing stresses in alfalfa, which provides a valuable resource for future identification and functional analysis of candidate genes in determining freezing tolerance.
RESUMO
The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response.
Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Zea mays/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Temperatura Baixa , Congelamento , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Prolina/biossíntese , Prolina/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , Sumoilação/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Zea mays/metabolismoRESUMO
Freezing tolerance as a cold resistance mechanism is described for the first time in a plant growing in the tropical range of the Andean high mountains. Draba chionophila, the plant in which freezing tolerance was found, is the vascular plant which reaches the highest altitudes in the Venezuelan Andes (approximately 4700m). Night cycles of air and leaf temperature were studied in the field to determine the temperature at which leaf freezing began. In the laboratory, thermal analysis and freezing injury determinations were also carried out. From both field and laboratory experiments, it was determined that freezing of the leaf tissue, as well as root and pith tissue, initiated at a temperature of approximately-5.0°C, while freezing injury occurred at approximately-12.0°C for the pith, and below-14.0°C for roots and leaves. This difference in temperature suggests that the plant still survives freezing in the-5.0 to-14.0°C range. Daily cycles of leaf osmotic potential and soluble carbohydrate concentration were also determined in an attempt to explain some of the changes occurring in this species during the nighttime temperature period. A comparison between Andean and African high mountain plants from the point of view of cold resistance mechanisms is made.