RESUMO
Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.
RESUMO
Here, we comprehensively investigated methanol electrooxidation on Cu-based catalysts, allowing us to build the first microfluidic fuel cell (µFC) equipped with a Cu anode and a metal-free cathode that converts energy from methanol. We applied a simple, fast, small-scale, and surfactant-free strategy for synthesizing Cu-based nanoparticles at room temperature in steady state (ST), under mechanical stirring (MS), or under ultrasonication (US). The morphology evaluation of the Cu-based samples reveals that they have the same nanoparticle (NP) needle-like form. The elemental mapping composition spectra revealed that pure Cu or Cu oxides were obtained for all synthesized materials. In addition to having more Cu2O on the surface, sample US had more Cu(OH)2 than the others, according to X-ray diffractograms and X-ray photoelectron spectroscopy. The sample US is less carbon-contaminated because of the local heating of the sonic bath, which also enhances the cleanliness of the Cu surface. The activity of the Cu NPs was investigated for methanol electrooxidation in an alkaline medium through electrochemical and spectroelectrochemical measurements. The potentiodynamic and potentiostatic experiments showed higher current densities for the NPs synthesized in the US. In situ FTIR experiments revealed that the three synthesized NP materials eletcrooxidize methanol completely to carbonate through formate. Most importantly, all pathways were led without detectable CO, a poisoning molecule not found at high overpotentials. The reaction path using the US electrode experienced an additional round of formate formation and conversion into carbonate (or CO2 in the thin layer) after 1.0 V (vs. Ag/Ag/Cl), suggesting improved catalysis. The high activity of NPs synthesized in the US is attributed to effective dissociative adsorption of the fuel due to the site's availability and the presence of hydroxyl groups that may fasten the oxidation of adsorbates from the surface. After understanding the surface reaction, we built a mixed-media µFC fed by methanol in alkaline medium and sodium persulfate in acidic medium. The µFC was equipped with Cu NPs synthesized in ultrasonic-bath-modified carbon paper as the anode and metal-free carbon paper as the cathode. Since the onset potential for methanol electrooxidation was 0.45 V and the reduction reaction revealed 0.90 V, the theoretical OCV is 0.45 V, which provides a spontaneous coupled redox reaction to produce power. The µFC displayed 0.56 mA cm-2 of maximum current density and 26 µW cm-2 of peak power density at 100 µL min-1. This membraneless system optimizes each half-cell individually, making it possible to build fuel cells with noble metal-free anodes and metal-free cathodes.
RESUMO
This study focuses on the synthesis of mixed metal oxide anodes (MMOs) with the composition Ti/RuO2Sb2O4Ptx (where x = 0, 5, 10 mol) using hybrid microwave irradiation heating. The synthesized electrodes were characterized using scanning electron microscopy, X-ray energy-dispersive analysis, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. These electrodes were then evaluated in both bulk electrolytic and fuel cell tests within a reversible chloralkaline electrochemical cell. The configurations using the electrodes Ti/(RuO2)0.7-(Sb2O4)0.3 and Ti/(RuO2)66.5-(Sb2O4)28.5-Pt5 presented lower onset potential for oxygen and chlorine evolution reactions and reduced resistance to charge transfer compared to the Ti/(RuO2)63-(Sb2O4)27-Pt10 variant. These electrodes demonstrated notable performance in reversible electrochemical cells, achieving Coulombic efficiencies of up to 60% when operating in the electrolytic mode at current densities of 150 mA cm-2. They also reached maximum power densities of 1.2 mW cm-2 in the fuel cell. In both scenarios, the presence of platinum in the MMO coating positively influenced the process. Furthermore, a significant challenge encountered was crossover through the membranes, primarily associated with gaseous Cl2. This study advances our understanding of reversible electrochemical cells and presents possibilities for further exploration and refinement. It demonstrated that the synergy of innovative electrode synthesis strategies and electrochemical engineering can lead to promising and sustainable technologies for energy conversion.
RESUMO
Excess energy derived from photosynthesis can be used in plant microbial fuel cell (PMFC) systems as a sustainable alternative for the generation of electricity. In this study, the in situ performance of CAM (Crassulacean acid metabolism) plants in Calama, in the Atacama Desert, was evaluated for energy recovery using PMFCs with stainless steel AISI 316L and Cu as electrodes. The plant species evaluated included Aloe perfoliata, Cereus jamacaru, Austrocylindropuntia subulata, Agave potatorum, Aloe arborescens, Malephora crocea, and Kalanchoe daigremontiana. Among the plant species, Kalanchoe daigremontiana demonstrated significant potential as an in situ PMFC, showing a maximum cell potential of 0.248 V and a minimum of 0.139 V. In addition, the cumulative energy for recovery was about 9.4 mWh m-2 of the electrode. The use of CAM plants in PMFCs presents a novel approach for green energy generation, as these plants possess an inherent ability to adapt to arid environments and water-scarce areas such as the Atacama Desert climate.
RESUMO
The over-exploitation of fossil fuels and their negative environmental impacts have attracted the attention of researchers worldwide, and efforts have been made to propose alternatives for the production of sustainable and clean energy. One proposed alternative is the implementation of bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs), which are sustainable and environmentally friendly. MFCs are devices that use bacterial activity to break down organic matter while generating sustainable electricity. Furthermore, MFCs can produce bioelectricity from various substrates, including domestic wastewater (DWW), municipal wastewater (MWW), and potato and fruit wastes, reducing environmental contamination and decreasing energy consumption and treatment costs. This review focuses on recent advancements regarding the design, configuration, and operation mode of MFCs, as well as their capacity to produce bioelectricity (e.g., 2203 mW/m2) and fuels (i.e., H2: 438.7 mg/L and CH4: 358.7 mg/L). Furthermore, this review highlights practical applications, challenges, and the life-cycle assessment (LCA) of MFCs. Despite the promising biotechnological development of MFCs, great efforts should be made to implement them in a real-time and commercially viable manner.
RESUMO
Composites of polyurethane and graphite and polyurethane and carbon nanofibers (PU/Graphite 0.5% and PU/CNF 1%) were synthesized and used as anodes in dual-compartment microbial fuel cells (MFCs) for municipal wastewater treatment; electrical energy generation and organic matter removal were assessed. The maximum power density, coulombic efficiency and chemical oxygen demand (COD) removal efficiency in the MFCs packed with the PU/Graphite 0.5% and PU/CNF 1% composites were 232.32 mW/m3 and 90.78 mW/m3, 5.87 and 4.41%, and 51.38 and 68.62%, respectively. In addition, the internal resistance of the MFCs with the best bioelectrochemical performance (PU/Graphite 0.5%) was 1051.11 Ω. The results obtained in this study demonstrate the feasibility of using these types of materials in dual-compartment MFCs for wastewater treatment with electric power generation.
RESUMO
Fuel cell technology has developed due to diminishing dependence on fossil fuels and carbon footprint production. This work focuses on a nickel-aluminum bronze alloy as an anode produced by additive manufacturing as bulk and porous samples, studying the effect of designed porosity and thermal treatment on mechanical and chemical stability in molten carbonate (Li2CO3-K2CO3). Micrographs showed a typical morphology of the martensite phase for all samples in as-built conditions and a spheroid structure on the surface after the heat treatment, possibly revealing the formation of molten salt deposits and corrosion products. FE-SEM analysis of the bulk samples showed some pores with a diameter near 2-5 µm in the as-built condition, which varied between 100 and -1000 µm for the porous samples. After exposure, the cross-section images of porous samples revealed a film composed principally of Cu and Fe, Al, followed by a Ni-rich zone, whose thickness was approximately 1.5 µm, which depended on the porous design but was not influenced significantly by the heat treatment. Additionally, by incorporating porosity, the corrosion rate of NAB samples increased slightly.
RESUMO
In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to deionized water in the cathodic chamber. Domestic wastewater was used as a substrate, and a DuPontTM Nafion 117 membrane was used as a proton exchange membrane. The maximum power density of 32.07 mW·m-2 was obtained using hydrophilic-treated graphene electrodes and hydrochloric acid as catholyte. This power density was 1.4-fold and 32-fold greater than that of graphene (22.15 mW·m-2) and graphite (1.02 mW·m-2), respectively, under the same operational conditions. In addition, the maximum organic matter removal efficiencies of 69.8% and 75.5% were obtained using hydrophilic-treated graphene electrodes, for hydrochloric acid catholyte and deionized water, respectively. Therefore, the results suggest that the use of hydrophilic-treated graphene functioning as electrodes in DC-MFCs, and hydrochloric acid as a catholyte, favored power density when domestic wastewater is degraded. This opens up new possibilities for improving DC-MFC performance through the selection of suitable new electrode materials and catholytes.
RESUMO
Due to the energy requirements for various human activities, and the need for a substantial change in the energy matrix, it is important to research and design new materials that allow the availability of appropriate technologies. In this sense, together with proposals that advocate a reduction in the conversion, storage, and feeding of clean energies, such as fuel cells and electrochemical capacitors energy consumption, there is an approach that is based on the development of better applications for and batteries. An alternative to commonly used inorganic materials is conducting polymers (CP). Strategies based on the formation of composite materials and nanostructures allow outstanding performances in electrochemical energy storage devices such as those mentioned. Particularly, the nanostructuring of CP stands out because, in the last two decades, there has been an important evolution in the design of various types of nanostructures, with a strong focus on their synergistic combination with other types of materials. This bibliographic compilation reviews state of the art in this area, with a special focus on how nanostructured CP would contribute to the search for new materials for the development of energy storage devices, based mainly on the morphology they present and on their versatility to be combined with other materials, which allows notable improvements in aspects such as reduction in ionic diffusion trajectories and electronic transport, optimization of spaces for ion penetration, a greater number of electrochemically active sites and better stability in charge/discharge cycles.
RESUMO
Bioelectrochemistry has gained importance in recent years for some of its applications on waste valorization, such as wastewater treatment and carbon dioxide conversion, among others. The aim of this review is to provide an updated overview of the applications of bioelectrochemical systems (BESs) for waste valorization in the industry, identifying current limitations and future perspectives of this technology. BESs are classified according to biorefinery concepts into three different categories: (i) waste to power, (ii) waste to fuel and (iii) waste to chemicals. The main issues related to the scalability of bioelectrochemical systems are discussed, such as electrode construction, the addition of redox mediators and the design parameters of the cells. Among the existing BESs, microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) stand out as the more advanced technologies in terms of implementation and R&D investment. However, there has been little transfer of such achievements to enzymatic electrochemical systems. It is necessary that enzymatic systems learn from the knowledge reached with MFC and MEC to accelerate their development to achieve competitiveness in the short term.
Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletrólise , Reatores Biológicos , EletrodosRESUMO
Photocatalytic fuel cells (PFCs) are considered the next generation of energy converter devices, since they can harvest solar energy through relatively low-cost semiconductor material to convert the chemical energy of renewable fuels and oxidants directly into electricity. Here, we report black TiO2 nanoparticle (NP) photoanodes for simple single-compartment PFCs and microfluidic photo fuel cells (µPFCs) fed by methanol. We show that Ti3+ and oxygen vacancy (OV) defects at the TiO2 NPs are easily controlled by annealing in a NaBH4-containing atmosphere. This optimized noble-metal-free black TiO2 photoanode shows superior PFC performance for methanol oxidation and O2 reduction with a maximum power density (Pmax) â¼2000% higher compared to the undoped TiO2. At flow conditions, the black TiO2 photoanode showed a Pmax â¼90 times higher than the µFC equipped with regular TiO2 in the dark. The PFC and µPFC operate spontaneously with little activation polarization, and black TiO2 photoanodes are stable under light irradiation. The improved photoactivity of the black TiO2 photoanode is a consequence of the self-doping with Ti3+/OV defects, which significantly red-shifted the bandgap energy, induced intragap electronic states, and widened both the valence band and conduction band, enhancing the overall absorption of visible light and decreasing the interfacial charge transfer resistance.
RESUMO
A microbial fuel cell (MFC), a novel technology, is a biochemical catalyzer system that can convert the chemical energy of materials to bioelectric energy. This system can serve as a unique device for the treatment of wastewater. Based on this knowledge, we decided to study the bioenergy production ability of Actinomycete and microbial isolates in industrial glass factory wastewater as the decomposers of organic materials in this wastewater and the generation of Voltage and current in two batches and fed-batch conditions. At the most favorable condition maximum of 1.08 V (current 3.66 mA and power density 2.88 mW/m2), 81.2% chemical oxygen demand was obtained for a fed-batch system. Also, the outcomes of MFC's essential parameters, for example, pH and TDS, were studied before and after the performance of MFC. The results showed a significant decrease after the operation of the MFC. To realize which Actinomycete were the most powerful bioelectric microorganism, the growth curve and electricity performance of three kinds of Actinomycete was selected. Results showed that the C2 would be more potent because its Voltage of 0.224 V and current of 1.187 mA possessed by it would result in an excellent power density of 141.42 mW/m2.
RESUMO
Bioelectrochemical systems (BESs) have been extensively studied for treatment and remediation. However, BESs have the potential to be used for the enrichment of microorganisms that could replace their natural electron donor or acceptor for an electrode. In this study, Winogradsky BES columns with As-rich sediments extracted from an Andean watershed were used as a strategy to enrich lithotrophic electrochemically active microorganisms (EAMs) on electrodes (i.e., cathodes). After 15 months, Winogradsky BESs registered power densities up to 650 µWcm-2. Scanning electron microscopy and linear sweep voltammetry confirmed microbial growth and electrochemical activity on cathodes. Pyrosequencing evidenced differences in bacterial composition between sediments from the field and cathodic biofilms. Six EAMs from genera Herbaspirillum, Ancylobacter, Rhodococcus, Methylobacterium, Sphingomonas, and Pseudomonas were isolated from cathodes using a lithoautotrophic As oxidizers culture medium. These results suggest that the tested Winogradsky BES columns result in an enrichment of electrochemically active As-oxidizing microorganisms. A bioelectrochemical boost of centenarian enrichment approaches, such as the Winogradsky column, represents a promising strategy for prospecting new EAMs linked with the biogeochemical cycles of different metals and metalloids.
RESUMO
This paper validates a sinusoidal approach for the proton-exchange membrane fuel cell (PEMFC) model as a supplement to experimental studies. An FC simulation or hardware emulation is necessary for prototype design, testing, and fault diagnosis to reduce the overall cost. For this objective, a sinusoidal model that is capable of accurately estimating the voltage behavior from the operating current value of the DC was developed. The model was tested using experimental data from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static and current-voltage, characteristic of the three regions of operation. A study was carried out to evaluate the effectiveness and superiority of the proposed FC Sinusoidal model compared with the Diffusive Global model and the Evolution Strategy.
RESUMO
An accurate model of a proton-exchange membrane fuel cell (PEMFC) is important for understanding this fuel cell's dynamic process and behavior. Among different large-scale energy storage systems, fuel cell technology does not have geographical requirements. To provide an effective operation estimation of PEMFC, this paper proposes a support vector machine (SVM) based model. The advantages of the SVM, such as the ability to model nonlinear systems and provide accurate estimations when nonlinearities and noise appear in the system, are the main motivations to use the SVM method. This model can capture the static and dynamic voltage-current characteristics of the PEMFC system in the three operating regions. The validity of the proposed SVM model has been verified by comparing the estimated voltage with the real measurements from the Ballard Nexa® 1.2 kW fuel cell (FC) power module. The obtained results have shown high accuracy between the proposed model and the experimental operation of the PEMFC. A statistical study is developed to evaluate the effectiveness and superiority of the proposed SVM model compared with the diffusive global (DG) model and the evolution strategy (ES)-based model.
RESUMO
The excessive use of fossil sources for the generation of electrical energy and the increase in different organic wastes have caused great damage to the environment; these problems have promoted new ways of generating electricity in an eco-friendly manner using organic waste. In this sense, this research uses single-chamber microbial fuel cells with zinc and copper as electrodes and pineapple waste as fuel (substrate). Current and voltage peaks of 4.95667 ± 0.54775 mA and 0.99 ± 0.03 V were generated on days 16 and 20, respectively, with the substrate operating at an acid pH of 5.21 ± 0.18 and an electrical conductivity of 145.16 ± 9.86 mS/cm at two degrees Brix. Thus, it was also found that the internal resistance of the cells was 865.845 ± 4.726 Ω, and a maximum power density of 513.99 ± 6.54 mW/m2 was generated at a current density of 6.123 A/m2, and the final FTIR spectrum showed a clear decrease in the initial transmittance peaks. Finally, from the biofilm formed on the anodic electrode, it was possible to molecularly identify the yeast Wickerhamomyces anomalus with 99.82% accuracy. In this way, this research provides a method that companies exporting and importing this fruit may use to generate electrical energy from its waste.
Assuntos
Ananas , Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Biofilmes , Águas ResiduáriasRESUMO
In this work, the preparation of dense blended membranes, from blends of poly(vinylidene fluoride) (PVDF), poly(ether sulfone) (PES) and polyethyleneimine (PEI) or Fumion®, with possible applications in alkaline fuel cell (AEMFC) is reported. The blended PEI/Fumion® membranes were prepared under a controlled air atmosphere by a solvent evaporation method, and were characterized regarding water uptake, swelling ratio, thermogravimetric analysis (TGA), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), ion exchange capacity (IEC), OH- conductivity and novel hydroxide ion exchange rate (HIER), which is related to the mass transport capacity of the OH- ions through the membrane. The effect of the chemical composition on its morphological and anion exchange properties was evaluated. It was expected that the usage of a commercial ionomer Fumion®, in the blended membranes would result in better features in the electrical/ionic conductivity behaviour. However, two of the membranes containing PEI exhibited a higher HIER and OH- conductivity than Fumion® membranes, and were excellent option for potential applications in AEMFC, considering their performance and the cost of Fumion®-based membranes.
RESUMO
The direct integration of paper-based microfluidic fuel cells (µFC's) toward creating autonomous lateral flow assays has attracted attention. Here, we show that an air-breathing paper-based µFC could be used as a power supply in pregnancy tests by oxidizing the human urine used for the diagnosis. We present an air-breathing paper-based µFC connected to a pregnancy test, and for the first time, as far as we know, it is powered by human urine without needing any external electrolyte. It uses TiO2-Ni as anode and Pt/C as cathode; the performance shows a maximum value of voltage and current and power densities of â¼0.96 V, 1.00 mA cm-2, and 0.23 mW cm-2, respectively. Furthermore, we present a simple design of a paper-based µFC's stack powered with urine that shows a maximum voltage and maximum current and power densities of â¼1.89 V, 2.77 mA cm-2 and 1.38 mW cm-2, respectively, which powers the display of a pregnancy test allowing to see the analysis results.
Assuntos
Microfluídica , Testes de Gravidez , Fontes de Energia Elétrica , Eletrodos , Feminino , Humanos , Oxirredução , GravidezRESUMO
The aim of this work was to assess effect of saturated constructed wetland-Microbial fuel cell system on dissolved oxygen gradient, electricity generation and ammonium removal. Two laboratory-scale systems, one planted with Schoenoplectus californicus (SCW1-MFC) and other without plant (SCW2-MFC), were fed discontinuously with synthetic wastewater over 90 days. Both systems were operated at different organic loading rate (12 and 28â g COD/m2d) and ammonium loading rate (1.6 and 3.0â g NH4+- N/m2 d) under open circuit and close circuit mode. The results indicate that between lower and upper zones of wetlands the average values were in the range of 1.22 ± 0.32 to 1.39 ± 0.27â mg O2/L in SCW1-MFC and 1.28 ± 0.24 to 1.56 ± 0.31â mg O2/L in SCW2-MFC. The effect of operating mode (closed and open circuit) and vegetation on DO was not significant (p > 0.05). Chemical oxygen demand (COD) removal efficiencies, fluctuated between 90 and 95% in the SCW1-MFC and 82 and 94% in the SCW2-MFC system. Regarding NH4+- N, removal efficiencies were above 85% in both systems reaching values maximus 98%. The maximum power density generated was 4 and 10â mW/m2 in SCW1-MFC, while SCW2-MFC recorded the highest values (12 and 22â mW/m2).
RESUMO
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.