RESUMO
Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.
RESUMO
We evaluated the effects of L-arginine supplementation during the last third of gestation on molecular mechanisms related to skeletal muscle development of piglets and litter traits at birth. Twenty-three nulliparous sows averaging 205.37 ± 11.50 kg of body weight were randomly assigned to the following experimental treatments: control (CON), where pregnant sows were fed diets to meet their nutritional requirements; arginine (ARG), where sows where fed CON + 1.0% L-arginine. Skeletal muscle from piglets born from sows from ARG group had greater mRNA expression of MYOD (p = 0.043) and MYOG (p ≤ 0.01), and tended to present greater mRNA expression (p = 0.06) of IGF-2 gene compared to those born from CON sows. However, there were no differences (p > 0.05) in the histomorphometric variables of fetuses' skeletal muscle. The total weight of born piglets, total weight of born alive piglets, piglet weight at birth, coefficient of variation of birth weight, and the incidence of intrauterine growth restriction (IUGR) piglets did not differ between groups. No stillborn piglets (p < 0.01) were verified in the ARG sows compared to CON group. The blood levels of estradiol (p = 0.035) and urea (p = 0.03) were higher in ARG sows compared to those from the CON group. In summary, our data show that arginine supplementation of nulliparous sows at late gestation enhance mRNA expression of key myogenic regulatory factors, which likely contribute to improve animal growth rates in later stages of development.
RESUMO
OBJECTIVE: The present study aimed to evaluate the influence of including L-glutamine along with glutamic acid as a supplement in weaned piglets' diets with and without whey powder. METHODS: Two assays were carried out. A total of 40 piglets ([Landrace×Large White]× Pietrain) weaned at 24 days of age with an initial body weight of 6.6±0.6 kg were used in the first assay, and the following parameters were evaluated: growth performance, the incidence of diarrhea, morphometry, intestinal integrity, and hepatic glycogen index. The animals were then blocked into four groups according to different diets: diet all-grain feeding (G); diet all-grain feeding with whey powder (GW); and with vs without 1% supplementation of the commercial product containing L-glutamine and glutamic acid (A or NA). Whey powder was added according to the stage of life, corresponding to 17%, 10%, and 5%, respectively, in order to meet the need for lactose. The animals were evaluated at 24 to 42 days and at 24 to 55 days of age. The nutrient digestibility for the second assay was carried out by using 24 animals with an average weight of 11.49±1.6 kg, and the same diets were tested. RESULTS: The supplementation of L-glutamine + glutamic acid or the addition of whey powder in diets for weaned piglets provided (p<0.05) greater feed intake, greater weight gain and improved feed conversion in the initial period (24 to 42 days age). However, in the whole period (24 to 55 days age) only amino acid supplementation affected (p<0.05) growth performance. There was a positive interaction (p<0.05) between the type of diet and L-glutamine + glutamic acid supplementation on villus height, crypt depth and the villus:crypt ratio in the duodenum. In addition, L-glutamine + glutamic acid supplementation reduced (p<0.05) the crypt depth and improved the villus:crypt ratio in the jejunum. The inclusion of whey powder affected (p<0.05) positively the digestibility coefficients analyzed except mineral matter digestibility coeficients. The supplementation of 1% the commercial product composed of L-glutamine and glutamic acid improved (p<0.05) only the digestibility coefficient of crude protein. CONCLUSION: These results indicate that supplementation of 1% commercial product containing L-glutamine + glutamic acid in diets for piglets from 24 to 55 days of age, dispenses with the use of whey powder when evaluating growth performance. Amino acid supplementation alone or associated with whey powder affects (p<0.05) positively the indicators of the intestinal integrity.