Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12141, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802456

RESUMO

A new aminonitrile-functionalized Fe3O4 has been synthesized via the Strecker reaction, the designed aminonitrile ligand on the surface of the magnetic core coordinated to copper(II) to obtain the final new catalyst. The fabricated nanocatalyst was characterized by Fourier transform Infrared (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating-Sample Magnetometer (VSM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and Thermogravimetric Analysis (TGA). The high tendency of nitrogens in the aminonitrile functional group to make a complex with Cu(II) has caused the practical activity of this nucleus in this catalyst. This nanocatalyst performance was investigated in azide-alkyne Huisgen cycloaddition (3 + 2) reaction for achieving to 1,4-disubstituted 1,2,3-triazoles in water as a green media at room temperature. In another try, Classic Ullmann Reaction was investigated for the synthesis of biaryls at 85 °C promoted by ultrasonic condition (37 kHz). The reaction scope was explored using different reactants and the results of using this developed catalytic system demonstrated its capacity to reduce the reaction time and enhance the reaction efficiency to provide good to excellent product yield. Conversely, the simple recycling and reusability of this catalyst for at least six times without any noticeable leaching of copper makes it a potential future catalyst for synthesizing such compounds.

2.
Microsc Res Tech ; 85(4): 1300-1310, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34820938

RESUMO

Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4'-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by X-ray photoelectron spectroscopy, where the formation of Bi2 O3 and Fe2 O3 phases, as well as intermediate phases in the Bi-Fe-O system, was observed. Magnetic measurements were carried out by a vibrating sample magnetometer that showed a ferromagnetic response. The low-temperature method of functionalization of the Kapton surface with bismuth and iron oxides will make it possible to adapt the Bi-Fe-O system to flexible electronics.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34578678

RESUMO

The goal of personalized medicine is to target the right treatments to the right patients at the right time. Patients with a variety of cancers and other complex diseases are regularly tested as part of patient care, enabling physicians to personalize patient monitoring and treatment. Among the sought-after diagnostic tools, there is an increasing interest and need for those based on a low-cost, easy, rapid, and accurate method for the detection of specific circulating biomarkers above a detection threshold. Lateral flow tests (LFTs), enhanced by nanotechnology, can fulfil these requirements, providing a significant support to personalized patient monitoring. In this review, after a short historical synopsis of membrane-based lateral flow assays, including a description of a typical configuration of a LFT strip, a careful collection is presented of the best characterized nanotechnology approaches previously reported for the enhancement of target detection performance. The attempt is to offer an overview of currently integrated nanotechnologies in LFTs, fostering the actual future development of advantageous diagnostic devices for patient monitoring.

4.
Bioprocess Biosyst Eng ; 44(2): 343-353, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32968847

RESUMO

Catechol level is an important indicator for evaluating the quality of tea. Therefore, the exploration of a simple and efficient quantitative detection method for catechol has an important significance. In this study, functionalized graphene oxide was synthesized by chemically modifying the surface of graphene oxide. The prepared carrier was covalently combined with biomimetic oxidase iron porphyrin (FePP, the active center of horseradish peroxidase). Ionic liquid as covalent coupling agents was designed as electronic bridge between biomimetic oxidase and graphene oxide. The novel biomimetic biosensor provided a detection range of 50.0-1600.0 µmol/L by modulating under the optimal conditions of the reaction system (FePP concentration is 1.5 × 10-3 mol/L, pH 3.0, Nafion solution dosage 1% and temperature 25 °C), the detection limit is 0.09 µmol/L. The biosensor has excellent stability, repeatability and reproducibility, and is expected to be applied to the rapid detection of catechol in actual tea sample..


Assuntos
Materiais Biomiméticos/química , Catecóis/análise , Técnicas Eletroquímicas , Grafite/química , Oxirredutases/química
5.
Journal of Medical Biomechanics ; (6): E465-E471, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-904425

RESUMO

Prosthetic loosening and periprosthetic inflammation, as serious complications after joint replacement surgery, often require the secondary surgery for repair, which is easy to adversely affect the physical/mental health and economic status of patients.Studies have shown that the functional phenotype expressed by macrophages by different stimuli, namely macrophage polarization state, prolonged M1 polarization can lead to the continuation of long-term inflammation, while timely and effective M2 macrophage phenotype will lead to enhanced osteogenesis and tissue remodeling cytokine secretion and subsequent osseointegration, which play a crucial role in the development and outcome of prosthetic loosening and periprosthetic inflammation.The local micro-environment of extracellular matrix (ECM) is an important factor in the activation, migration, proliferation and fusion of macrophages. Researchers have deeply understood it mainly through the crosstalk between surface properties of biomaterials and macrophages. As an effector cell, macro-phages can perform complex spatiotemporal cellular functional responses by sensing the physical and chemical environment (surface topography, wettability, chemical composition, biological proteins) represented by surface properties of biomaterials.This paper summarizes the recent findings on macrophage polarization and material surface properties.

6.
J Colloid Interface Sci ; 561: 533-541, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740136

RESUMO

Surface modification of natural clay minerals with reagents containing metal chelating groups has great environmental value. The functionalization by adsorption or grafting guarantees a durable immobilization of the reactive organic groups, preventing their leaching when they are used in liquid media. The aim of this research was the designed mercapto functionalization of swelling brittle micas, Na-Mn, thorough both chemical and physical mechanisms. Na-Mn were functionalized with 2-mercaptoethylammonium (MEA), 2,3-dimercapto-1-propanol (BAL) and (3-mercaptopropyl)trimethoxysilane (MPTMS). The thiol concentration on swelling brittle micas is higher than the observed value for others adsorbents. The cation exchange reaction with MEA and one-step grafting with MPTMS in acid medium are the most efficient mercapto functionalization mechanism.

7.
JACC Basic Transl Sci ; 4(1): 56-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847420

RESUMO

Cardiovascular disease is an inflammatory disorder that may benefit from appropriate modulation of inflammation. Systemic treatments lower cardiac events but have serious adverse effects. Localized modulation of inflammation in current standard treatments such as bypass grafting may more effectively treat CAD. The present study investigated a bioactive vascular graft coated with the macrophage polarizing cytokine interleukin-4. These grafts repolarize macrophages to anti-inflammatory phenotypes, leading to modulation of the pro-inflammatory microenvironment and ultimately to a reduction of foreign body encapsulation and inhibition of neointimal hyperplasia development. These resulting functional improvements have significant implications for the next generation of synthetic vascular grafts.

8.
ACS Appl Mater Interfaces ; 10(51): 44924-44931, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485060

RESUMO

An epoxy group was successfully attached to the surface of silicon nanoparticle (SiNPs) via a silanization reaction between silanol-enriched SiNPs and functional silanes. The epoxy-functionalized SiNPs showed a much improved cell performance compared with the pristine SiNPs because of the increased stability with electrolyte and the formation of a covalent bond between the epoxy group and the polyacrylic acid binder. Furthermore, the anode laminate made from epoxy-SiNPs showed much enhanced adhesion strength. Post-test analysis shed light on how the epoxy-functional group affects the physical and electrochemical properties of the SiNP anode.

9.
ACS Appl Mater Interfaces ; 10(47): 40871-40879, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30398853

RESUMO

Herein, we report a simple coat/cure preparation of epoxide-functionalized surfaces using a photocurable copolymer technology. The photocurable copolymer, poly(glycidyl methacrylate- co-butyl acrylate- co-4-benzoylphenyl methacrylate) (GBB), was synthesized by single electron transfer-living radical polymerization (SET-LRP). The epoxide content in the copolymer was tuned by controlling the content of glycidyl methacrylate. Three copolymers, GBB(1), GBB(2), and GBB(3), with epoxide contents of 22, 63, and 91 mol %, respectively, were cast onto polypropylene films and photocured by UV-light exposure. Subsequently, iminodiacetic acids (IDA) were immobilized onto the GBB-coated materials via a ring-opening reaction. The IDA-functionalized coatings GBB(1)-IDA, GBB(2)-IDA, and GBB(3)-IDA presented IDA contents of 1.47 ± 0.08, 18.67 ± 1.46, and 49.05 ± 2.88 nmol/cm2, respectively, which increased as the epoxide content increased. The IDA-functionalized GBB coatings exhibited metal chelating capability toward transition metal ions (e.g., iron and copper). The reported photocurable copolymer technology offers a facile and tunable preparation of epoxide-functionalized surfaces, with potential extended applications in biopatterning, active packaging, and nanotechnology.

10.
Polymers (Basel) ; 10(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30960631

RESUMO

The present paper reports on the development of a biodegradable overmolded orthopedic implant: a metal bone fixing screw, which has been overmolded with a functionalized thin layer of biodegradable polymer to enhance cell adhesion during the healing process. The main challenges were to integrate precise, high-throughput and repeatable solutions to achieve a thin, defect-free structured polymer layer and to ensure a high and consistent implant quality. The work carried out entailed determining proper materials (Purasorb PDLG 5010) for the biodegradable overmolding layer and its economical substitute (NaKu PLA 100HF) to be used during initial tool and process development, designing the surface structure of the overmolded polymer layer, development of injection molding tools, as well as feeding and handling procedures. The injection overmolding process of Purasorb PDLG 5010 polymer was controlled, and the process parameters were optimized. In particular, the dominant process parameters for the overmolding, namely injection pressure, barrel temperature and mold temperature, were experimentally examined using a circumscribed three-factor central composite design and two quality marks; overmolding roughness and mass of polymer. The analysis of the experimental results shows that the mass of the overmolding is not feasible for use as the quality mark. However, the optimal parameters for the overmolding of a metallic implant screw with a thin, micro-structured polymer layer with a predefined roughness of the surface texture have been identified successfully.

11.
ACS Appl Mater Interfaces ; 8(46): 31902-31915, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933972

RESUMO

Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.

12.
FEBS Lett ; 589(23): 3527-33, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26484594

RESUMO

Extrinsic apoptosis is initiated by recognition and clustering of the single-pass transmembrane proteins Fas ligand and Fas expressed at the surface of closely apposed lymphocytes and target cells, respectively. Since Fas-mediated death response was mainly studied with soluble antibodies, the mobility constraints for receptor activation by a membrane embedded agonist is not well understood. We explored this influence by stimulating apoptosis on functionalized supported lipid bilayers, where we quantified agonist mobility by z-scan fluorescence correlation spectroscopy. Using different lipid compositions, we show that the apoptotic response correlates with increased lateral mobility of the agonist in the lipid bilayer.


Assuntos
Apoptose , Bicamadas Lipídicas/metabolismo , Movimento , Receptor fas/agonistas , Receptor fas/metabolismo , Células HEK293 , Humanos , Fluidez de Membrana
13.
ACS Appl Mater Interfaces ; 7(10): 5643-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25695347

RESUMO

Polycarbonate is a desirable material for many applications due to its favorable mechanical and optical properties. Here, we report a simple, safe, environmentally friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate. We characterize the efficacy of the surface amination using X-ray photo spectroscopy, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and contact angle measurements. Furthermore, we demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including antifouling coatings and oriented membrane proteins.


Assuntos
Aminas/química , Materiais Revestidos Biocompatíveis/síntese química , Cimento de Policarboxilato/química , Água/química , Adsorção , Aminação , Teste de Materiais , Propriedades de Superfície
14.
J Phys Chem Lett ; 5(1): 149-53, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276195

RESUMO

Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...