Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Vet Med Sci ; 10(4): e1497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952252

RESUMO

BACKGROUND: Annually, a massive amount of broiler litter (BL) is produced in the world, which causes soil and surface water pollution due to its high nitrogen content and microbial count. While ruminants can use this non-protein nitrogen (NPN) source for microbial protein synthesis. This issue becomes more critical when protein sources are unavailable or very expensive. One of the sources of NPN is BL which is produced at a considerable amount in the world yearly. OBJECTIVES: This aim of this research was to conduct a survey of non-thermal technologies such as electrocoagulation (EC), ultraviolet (UV) radiation, and ultrasound (US) waves on the microbial safety and nutritional value of BL samples as a protein source in ruminant diets. MATERIALS AND METHODS: The methodology of this study was based on the use of an EC device with 24 V for 60 min, UV-C light radiation (249 nm) for 1 and 10 min, and US waves with a frequency of 28 kHz for 5, 10 and 15 min to process BL samples compared with shade-dried samples. Chemical composition and nutritional values of processed samples were determined by gas production technique and measurement of fermentation parameters in vitro. RESULTS: Based on the results, microbial safety increased in the samples processed with the US (15 min). The EC method had the best performance in reducing the number of fungi and mould. However, none of the methods could remove total bacteria and fungi. Digestibility of BL was similar in shade-dried, EC, and US (10 min) treatments. In general, the use of EC and US15 without having adverse effects on gas production caused a decrease in the concentration of ammonia nitrogen. In contrast, it caused a decrease in neutral detergent fibre (NDF) in the investigated substrate. CONCLUSIONS: In general, it can be concluded that the use of US5 and EC methods without having a negative effect on the parameters of gas production and fermentation in vitro, while reducing NDF, causes a significant reduction in the microbial load, pathogens, yeast, and mould. Therefore, it is suggested to use these two methods to improve feed digestibility for other protein and feed sources.


Assuntos
Galinhas , Fermentação , Valor Nutritivo , Raios Ultravioleta , Animais , Ondas Ultrassônicas , Esterco/análise , Esterco/microbiologia
2.
Chemistry ; : e202402264, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981862

RESUMO

Modular synthesis can combine different functional module to flexibly regulate comprehensive properties and study the diversity of compounds. This study established a modular bicyclic synthesis strategy of combining polynitro energetic module with iodine-containing biocidal module. Compounds 1-6 with high iodine content (48.72-69.56%) and high thermal stability (Td: 172-304 ˚C) were synthesized and exhaustively identified. By modular synthesis, the detonation properties and gas-production of 3-6 improved greatly expanding their biocidal efficacy and maintained the iodine atomic utilization of iodine-containing module. Notably, 4,5-diiodo-3,4',5'-trinitro-1,3'-bipyrazole (5) and 3,5-diiodo-4,4',5'-trinitro-1,3'-bipyrazole (6) exhibit high detonation velocities (D: 5903 m s-1, 5769 m s-1, respectively) and highest gas production of 212.85 L mol-1 and 217.66 L mol-1 after decomposition. This study diversifies polyiodio-nitro compounds, and also inspire the implementation of similar synthesis strategies to provide family-level synthetic solutions to energetic biocidal materials.

3.
Animals (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929423

RESUMO

3-nitropropionic acid (3NPA) has been proposed as an useful modifier to mitigate ruminal enteric methane emissions. However, few studies investigated the effects of 3NPA on ruminal fermentation characteristics of grazing ruminants in vitro. Rumen fluid from grazing yak and cattle were collected and incubated with additions of 0, 8, and 16 mM 3NPA. The total gas production, CH4 production, and dry matter digestibility significantly decreased with increasing 3NPA doses in both ruminant species (p < 0.05) and methane production decreased to almost 100% in cattle at 8 mM NPA but not yak, while H2 accumulation showed an opposite trend. The total fatty acid (TVFA) production, acetate concentration, and propionate concentration in cattle decreased as 3NPA doses increased at 12 and 24 h incubation. For yak, the H2 accumulation reached its apex at 8 mM NPA (p < 0.05). The TVFA in yak decreased significantly with increasing 3NPA doses at 12 and 72 h incubation. Moreover, the acetate concentration and propionate concentration in yak decreased as 3NPA doses increased at 12 and 24 h incubation. Overall, these findings demonstrated that 3NPA could be used as a strategy to mitigate methane emissions; although, it negatively affected the dry matter degradability in vitro.

4.
Vet Sci ; 11(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921989

RESUMO

Almond hulls (AH) are frequently used in dairy ruminant feeding, but information on variability of their nutritive value and their potential effects on CH4 production is still scarce. The influence of almond variety (Guara vs. Soleta) on chemical composition and energy value of AH was investigated using 10 samples per variety collected in 2 consecutive years. Guara-AH had greater (p ≤ 0.015) ash, protein, and fat content, but lower (p ≤ 0.001) fiber than Soleta-AH. The metabolizable energy content estimated from chemical composition and in vitro gas production was 8.5% greater for Guara than for Soleta samples. Harvesting year significantly affected most of the chemical fractions. The in vitro ruminal fermentation of diets for dairy ruminants including increasing amounts of dried AH (8, 16 and 24% of the total diet; fresh matter basis) indicated that AH can be included up to 16% of the diet, partially substituting corn, wheat bran and sugar beet pulp without detrimental effects on in vitro volatile fatty acid (VFA) production. In contrast, when AH replaced alfalfa hay and corn, VFA production was reduced at all levels of AH inclusion. No antimethanogenic effects of AH were detected in the in vitro incubations.

5.
Animals (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891692

RESUMO

The objective of this study was to evaluate the effects of the inclusion of dried Salvia officinalis (SO) shrub leaves on nutrient degradability, ruminal in vitro fermentation, gas production (GP), methane (CH4), and carbon dioxide (CO2) productions. Dried and ground SO shrub leaves were included at 0% (control), 0.5%, 1%, 1.5%, and 2% DM of a diet consisting of (per kg DM) 500 g concentrate feed mixture, 400 g berseem hay, and 100 g rice straw. The diet was incubated for 48 h. The asymptotic GP and the rate of GP changed linearly and quadratically (p < 0.01), with the highest GP observed at 1% inclusion of SO and then decreasing thereafter with greater inclusion (i.e., 1.5% and 2%), while CH4 production and its rate decreased linearly (p < 0.01) with all levels of SO inclusion. A linear increase in CO2 production and its rate was also found with an increasing level of SO inclusion in the diet (p < 0.05). Furthermore, the degradability of DM, NDF, and the concentration of total short-chain fatty acids and acetate changed linearly and quadratically, with the greatest being found at 1% SO inclusion and then steadily declining after (p < 0.01) with the 1.5% and 2% inclusion levels. Meanwhile, the propionate, NH3-N, and microbial crude protein levels showed similar trends, with the plateau found at 1% inclusion of SO, where there was no change in butyrate concentration. Moreover, the pH, metabolizable energy, and partitioning factor (PF24) also changed linearly and quadratically (p < 0.05), where the pH and PF24 were considerably reduced and ME increased with a 1% inclusion of SO (p < 0.05). In summary, SO at 1% inclusion in the diet showed the potential to improve gas production kinetics, nutrient degradability, and the ruminal fermentation profile, with a more significant reduction in ruminal CH4 production suggesting that SO at 1% could be included in the ruminant diet to reduce their carbon footprint and increase the production performance.

6.
Heliyon ; 10(10): e31203, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803886

RESUMO

Lithium-ion batteries (LIBs) generate substantial gas during the thermal runaway (TR) process, presenting serious risks to electrochemical energy storage systems in case of ignition or explosions. Previous studies were mainly focused on investigating the TR characteristics of Li(NixCoyMnz)O2 batteries with different cathode materials, but they were conducted in isolation. In this study, the thermal runaway characteristics of prismatic cells that use Li(NixCoyMnz)O2 (with x ranging from 0.33 to 0.9) cathode materials in an inert environment, which are commonly used or proposed for energy storage applications, are examined. The findings of this research show that the normalized gas generation rate remains consistent, regardless of the battery capacity or experimental chamber volume, with a value of 0.1 ± 0.03 mol∙Ah⁻1. High-capacity cells have short jetting durations, and a high nickel content leads to increased mass loss rates. The flammability limits of the gases expelled during thermal runaway, represented by the lower flammability limit (LFL), remain stable at 8 ± 1.8 % with minimal variations. However, the upper flammability limit (UFL) varies significantly, ranging from 30 % to 60 %. Increasing the battery capacity or reducing the experimental chamber volume increases the explosion index. The explosive, combustibility, and jetting duration characteristics of the emitted gases from five different battery chemical compositions provide valuable insights for risk assessment in future electrochemical energy storage systems.

7.
Insects ; 15(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786899

RESUMO

The purpose of this experiment was to evaluate the effects of different levels of BSF on rumen in vitro fermentation gas production, methane (CH4) production, ammonia nitrogen (NH3-N), and volatile fatty acids (VFAs). The experiment comprised four treatments, each with five replicates. The control group contained no BSF (BSF0), and the treatment groups contained 5% (BSF5), 10% (BSF10), and 15% (BSF15) BSF, respectively. Results showed that at 3 h, 9 h, and 24 h, gas production in BSF5 and BSF10 was significantly higher than in BSF0 and BSF15 (p < 0.05). Gas production in BSF5 and BSF10 was higher than in BSF0, while gas production in BSF15 was lower than in BSF0. At 6 h and 12 h, CH4 emission in BSF15 was significantly lower than in the other three groups (p < 0.05). There were no differences in the pH of in vitro fermentation after BSF addition (p > 0.05). At 3 h, NH3-N levels in BSF10 and BSF15 were significantly higher than in BSF0 and BSF5 (p < 0.05). At 6 h, NH3-N levels in BSF5 and BSF10 were significantly higher than in BSF0 and BSF15 (p < 0.05). Acetic acid, propionic acid, butyric acid, and total VFAs in BSF0, BSF5, and BSF10 were significantly higher than in BSF15 (p < 0.05). In conclusion, gas production, CH4 emission, NH3-N, acetic acid, propionic acid, butyric acid, and VFAs were highest in BSF5 and BSF10 and lowest in BSF15.

8.
AMB Express ; 14(1): 37, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622373

RESUMO

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

9.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
10.
Heliyon ; 10(7): e28215, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586422

RESUMO

Although there are papers on the persistence of energy series including the persistence of shale gas, the impact of recent developments such as the Covid-19 pandemic and Russia-Ukraine conflict have been rarely explored in the existing literature. This paper examines the structure of shale gas production in the U.S. by looking at the degree of persistence across different areas, with the aim to determine if shocks in the series are permanent or transitory. Using fractional integration methods (which unlike the conventional methods, allow for the determination of the persistence of energy and non-energy series in a robust manner), and different subsamples that include the Covid-19 pandemic and the Russia-Ukraine war, our results indicate that there is a substantial decrease in the integration order in the total shale gas production in the U.S. as well as in four other plays-Haynesville, Permian, Utica and Eagle Ford. However, no differences are observed with respect to the Russia-Ukraine war. There is another group of four series (Marcellus, Niobrara-Codell, Woodford and Rest of US 'shale') with a very small reduction in the degree of persistence and another group of three series with almost no reduction at all in the order of integration (Barnett, Mississippian and Fayetteville). Several implications in terms of policy are reported at the end of the manuscript.

11.
Animals (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672287

RESUMO

The aim of this study is to investigate the effect of dragon fruit peel polyphenolic extract (DFPE) on gas production, rumen fermentation, and bacterial communities in sika deer using an in vitro technique. Three treatments with different DFPE levels (DFPE0, base diet; DFPE5, base diet + 5 mg/g DFPE; DFPE10, base diet + 10 mg/g DFPE, respectively; n = 6) were implemented. The phenolic composition of DFPE, gas production (GP), ammonia nitrogen (NH3-N), volatile fatty acid (VFA), and bacteria communities was evaluated after 24 h of incubation. The results showed that GP and NH3-N were reduced by DFPE supplementation. Total VFA, isovaleric acid, and valeric acid were increased (p < 0.05) by the addition of DFPE. No changes (p > 0.05) were observed in pH, acetic acid, propionic acid, isobutyric acid, butyric acid, and the ratio of acetic acid to propionic acid. Additionally, the alpha indexes, including Sobs, Shannon, and Ace, were increased by DFPE supplementation. Moreover, at the phylum level, DFPE supplementation increased (p = 0.01) Bacteroidota but reduced (p < 0.01) Firmicutes. At the genus level, compared to DFPE0, the DFPE10 had increased relative abundances of Rikenellaceae_RC9_gut_group (p < 0.01), norank_f_Muribaculaceae (p = 0.01), Lachnospiraceae_NK3A20_group (p < 0.01), Christensenellaceae_R-7_group (p < 0.01), and NK4A214_group (p < 0.01), decreased relative abundances of Streptococcus (p < 0.01), Oribacterium (p = 0.01), and Enterococcus (p < 0.01). Compared to DFPE0, DFPE5 had no change (p > 0.05) in all bacteria at the genus level except for decreased relative abundance of Enterococcus (p < 0.01). These results indicated that DFPE may be able to be used as a feed additive to enhance fermentation parameters and improve ruminal bacteria communities in Sika deer.

12.
Front Nutr ; 11: 1283239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549754

RESUMO

Meatless Monday is a global movement that encourages people to reduce meat in their diets for their own health and the health of the planet. We conducted a comprehensive review of primary and secondary sources and archival material documenting the origins, historical roots, and growth of Meatless Monday and simultaneous developments in public health. Sources for the paper included publications of the US Food Administration and articles and media identified using searches of ProQuest Historical Newspapers, Newspapers.com Academic, ProQuest US Newsstream, ProQuest Canadian Newstream, ProQuest International Newsstream databases, and Google.com. Meatless Monday was conceived by the advertising executive and public health advocate Sid Lerner in 2003, inspired by the meatless days observed during World War I and II. Meatless Monday grew steadily from 2003 to 2023 through advocacy by food writers, talk show hosts, and celebrity chefs, and through participation by schools, cities, restaurants, corporations, and institutions worldwide. School systems began to observe Meatless Monday, such as Baltimore City Public Schools in 2009 and New York City Public Schools in 2019. Meat-Free Monday campaign was launched by Paul McCartney and his daughters in 2009 in the United Kingdom. The Humane Society of the United States became an advocate for Meatless Monday and helped institute it in >200 US school systems. From 2003 to 2023, Meatless Monday spread to over 40 countries and was observed in public schools in countries such as Brazil, Ireland, and Belgium. Findings regarding high meat consumption and its adverse effects on health, high greenhouse gas production and environment degradation, and problems with animal welfare under conditions of industrial food animal production emerged during the same period and influenced many to advocate Meatless Monday. Meatless days of World War I and II were driven by patriotic motivations to provide food for the US troops and the Allies in Europe, whereas motivations for observing Meatless Monday were largely related to concerns regarding personal health, the environment, and animal welfare. Meatless Monday grew from relatively humble origins to a highly recognized worldwide movement with wide appeal as a way to begin reducing meat consumption for personal and planetary health.

13.
Heliyon ; 10(6): e27991, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524609

RESUMO

This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.

14.
Environ Sci Technol ; 58(11): 4948-4956, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445593

RESUMO

Methane emissions from the oil and gas supply chain can be intermittent, posing challenges for monitoring and mitigation efforts. This study examines shallow water facilities in the US Gulf of Mexico with repeat atmospheric observations to evaluate temporal variation in site-specific methane emissions. We combine new and previous observations to develop a longitudinal study, spanning from days to months to almost five years, evaluating the emissions behavior of sites over time. We also define and determine the chance of subsequent detection (CSD): the likelihood that an emitting site will be observed emitting again. The average emitting central hub in the Gulf has a 74% CSD at any time interval. Eight facilities contribute 50% of total emissions and are over 80% persistent with a 96% CSD above 100 kg/h and 46% persistent with a 42% CSD above 1000 kg/h, indicating that large emissions are persistent at certain sites. Forward-looking infrared (FLIR) footage shows many of these sites exhibiting cold venting. This suggests that for offshore, a low sampling frequency over large spatial coverage can capture typical site emissions behavior and identify targets for mitigation. We further demonstrate the preliminary use of space-based observations to monitor offshore emissions over time.


Assuntos
Poluentes Atmosféricos , Metano , Metano/análise , Golfo do México , Estudos Longitudinais , Poluentes Atmosféricos/análise , Probabilidade , Gás Natural
15.
Appl Radiat Isot ; 206: 111246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402844

RESUMO

In this study, gamma dose rates generated from the naturally occurring radioactive materials (NORM) were measured in the waste streams of a large scale and sludge onshore petroleum operations. Measurements conducted in this work involved: sludge recovery from separation tanks, sludge forming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was carried out in many places of different terrain of an operation oil exploration and production in Murzuq basin in the Southwest of Libya. The radiation dose rates were measured using portable InSpector-1000. A total of 400 dose rates were acquired. The highest dose rate was 70 µSv/h acquired in sludge stored in barrels. The estimated mean annual equivalent doses in this field were in the range of 0.2-2.8 mSv/y in the first scenario, while in the second scenario the calculated mean annual equivalent doses were in the range of 0.04-0.68 mSv/y. It is assumed that workers may face various exposures in the field where measurements took place, considering the total annual effective dose to be 1.53 mSv/y. The main radioisotopes detected in these samples indicated by the display of the measuring device were 226Ra and 228Ra but detecting both radioisotopes in the same run is not achievable by using the display of the screen.

16.
Animals (Basel) ; 14(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338059

RESUMO

The aim of the study was to examine the differences in the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation among six varieties of sorghum stalks. The results show that maoliangnuo 1 (M1) contained a higher (p < 0.05) level of dry matter, and jinzhong 405 (J4) contained a higher (p < 0.05) level of crude protein content. The concentrations of neutral detergent fiber, acid detergent fiber, and cellulose were significantly higher (p < 0.05) in stalk jinliangnuo (JN). The levels of chlorogenic acid, homoorientin, isovitexin, vitexin, rhoifolin, genistin, quercetin, apigenin, aloe emodin, emodin, and total polyphenols were all significantly (p < 0.05) higher in maohongnuo 6 (M6) than in the other stalks. Moreover, stalk M6 contained higher (p < 0.05) levels of total antioxidant capacity (TAC), glutathione peroxidase (GPX), catalase (CAT), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. There were significant (p < 0.05) positive correlations between total polyphenols and TAC, superoxide dismutase, GPX, CAT, and DPPH free-radical scavenging capacity. The total gas production was significantly (p < 0.05) influenced by the sorghum stalk variety and incubation time. Stalk J4 displayed higher values for the (p < 0.05) immediately soluble fraction and the potential extent of gas production, while stalk M6 exhibited a significantly lower (p < 0.05) insoluble fraction level. Furthermore, stalk M6 exhibited a significantly higher level of (p < 0.05) ruminal fluid propionic acid, but its level of butyric acid and its ratio of acetic acid to propionic acid were both significantly lower (p < 0.05). Taken together, the results reported in this paper indicate that the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation all vary greatly among different varieties of sorghum stalks.

17.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399704

RESUMO

The administration of Bacilli to dairy cows exerts beneficial effects on dry matter intake, lactation performance, and milk composition, but the rationale behind their efficacy is still poorly understood. In this work, we sought to establish whether cellulases and xylanases, among the enzymes secreted by B. subtilis, are involved in the positive effect exerted by Bacilli on ruminal performance. We took advantage of two isogenic B. subtilis strains, only differing in the secretion levels of those two enzymes. A multi-factorial study was conducted in which eight feed ingredients were treated in vitro, using ruminal fluid from cannulated cows, with cultures of the two strains conveniently grown in a growth medium based on inexpensive waste. Feed degradability and gas production were assessed. Fiber degradability was 10% higher (p < 0.001) in feeds treated with the enzyme-overexpressing strain than in the untreated control, while the non-overexpressing strain provided a 5% increase. The benefit of the fibrolytic enzymes was maximal for maize silage, the most recalcitrant feed. Gas production also correlated with the amount of enzymes applied (p < 0.05). Our results revealed that B. subtilis cellulases and xylanases effectively contribute to improving forage quality, justifying the use of Bacilli as direct-fed microbials to increase animal productivity.

18.
Vet Med Sci ; 10(2): e1349, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400687

RESUMO

BACKGROUND: Accurate dosing of feed additives is often required to evaluate their effects on rumen fermentation. This can be done using soluble but nonfermentable hydroxypropyl methylcellulose (HPMC) hard capsules. OBJECTIVES: The aim of the study was to evaluate the effect of HPMC hard capsules on the extent and rate of in vitro gas production in eleven feeds. METHODS: Six high-fibre feeds and five concentrates, were weighed into syringes either directly or into HPMC capsules and incubated anaerobically in 30 mL buffered rumen fluid at 39°C. Data obtained from gas production measurements were fitted using the Gompertz model to obtain kinetic parameters for gas production. RESULTS: HPMC hard capsules had no effect on the gas production of the blank sample and concentrate feeds. In contrast, high-fibre feeds weighed in HPMC showed a significant decrease (p < 0.05) in total gas production and gas produced within 24 h of incubation. CONCLUSIONS: The use of HPMC hard capsules was found to be inappropriate for determining gas production kinetics because fermentation subsides at a certain point when peak fermentation is reached (at TMFR), resulting in a decrease in both total potential gas production and gas production within 24 h of incubation. This is particularly evident when high-fibre feeds are incubated.


Assuntos
Rúmen , Ruminantes , Animais , Derivados da Hipromelose/metabolismo , Fermentação
19.
J Sci Food Agric ; 104(9): 5296-5304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308576

RESUMO

BACKGROUND: Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS: Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION: Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.


Assuntos
Ração Animal , Bactérias , Fibras na Dieta , Ácidos Graxos Voláteis , Fezes , Fermentação , Microbioma Gastrointestinal , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Fezes/microbiologia , Animais , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Suínos , Ração Animal/análise , Zea mays/química , Zea mays/metabolismo , Beta vulgaris/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiologia , Medicago sativa/química , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Oryza/metabolismo , Oryza/química , Oryza/microbiologia
20.
Environ Sci Technol ; 58(3): 1509-1517, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189232

RESUMO

Natural gas flaring is a common practice employed in many United States (U.S.) oil and gas regions to dispose of gas associated with oil production. Combustion of predominantly hydrocarbon gas results in the production of nitrogen oxides (NOx). Here, we present a large field data set of in situ sampling of real world flares, quantifying flaring NOx production in major U.S. oil production regions: the Bakken, Eagle Ford, and Permian. We find that a single emission factor does not capture the range of the observed NOx emission factors within these regions. For all three regions, the median emission factors fall within the range of four emission factors used by the Texas Commission for Environmental Quality. In the Bakken and Permian, the distribution of emission factors exhibits a heavy tail such that basin-average emission factors are 2-3 times larger than the value employed by the U.S. Environmental Protection Agency. Extrapolation to basin scale emissions using auxiliary satellite assessments of flare volumes indicates that NOx emissions from flares are skewed, with 20%-30% of the flares responsible for 80% of basin-wide flaring NOx emissions. Efforts to reduce flaring volume through alternative gas capture methods would have a larger impact on the NOx oil and gas budget than current inventories indicate.


Assuntos
Poluentes Atmosféricos , Gás Natural , Estados Unidos , Poluentes Atmosféricos/análise , Gases , Texas , Óxidos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...