Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.092
Filtrar
1.
J Biol Chem ; : 107523, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969063

RESUMO

Despite the ever-growing research interest in polyhydroxyalkanoates (PHAs) as green plastic alternatives, our understanding of the regulatory mechanisms governing PHA synthesis, storage, and degradation in the model organism Ralstonia eutropha remains limited. Given its importance for central carbon metabolism, PHA homeostasis is probably controlled by a complex network of transcriptional regulators. Understanding this fine-tuning is key for developing improved PHA production strains thereby boosting the application of PHAs. We conducted promoter pull-down assays with crude protein extracts from R. eutropha Re2058/pCB113, followed by LC-MS/MS, to identify putative transcriptional regulators involved in the expression control of PHA metabolism, specifically targeting phasin phaP1 and depolymerase phaZ3 and phaZ5 genes. The impact on promoter activity was studied in vivo using ß-galactosidase assays and the most promising candidates were heterologously produced in Escherichia coli and their interaction with the promoters investigated in vitro by Electrophoretic Mobility Shift Assays. We could show that R. eutropha DNA-binding XRE-family-like protein H16_B1672, specifically binds the phaP1 promoter in vitro with a KD of 175 nM and represses gene expression from this promoter in vivo. Protein H16_B1672 also showed interaction with both depolymerase promoters in vivo and in vitro suggesting a broader role in the regulation of PHA metabolism. Furthermore, in vivo assays revealed that the H-NS-like DNA-binding protein H16_B0227 and the peptidyl-prolyl cis-trans isomerase PpiB, strongly repress gene expression from PphaP1 and PphaZ3, respectively. In summary, this study provides new insights into the regulation of PHA metabolism in R. eutropha, uncovering specific interactions of novel transcriptional regulators.

2.
N Biotechnol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960022

RESUMO

The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88%) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.

3.
Microbiol Res ; 286: 127814, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38954993

RESUMO

Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.

4.
Cell Genom ; : 100603, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38955188

RESUMO

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

5.
Chemosphere ; : 142762, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971440

RESUMO

Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.

6.
Front Immunol ; 15: 1410150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947331

RESUMO

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Assuntos
Peixes , Regulação da Expressão Gênica , Ferro , Estresse Fisiológico , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Peixes/imunologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/efeitos dos fármacos , Nanopartículas Metálicas , Arsênio/toxicidade
7.
Clin Epigenetics ; 16(1): 88, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970134

RESUMO

BACKGROUND: DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex, polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation in phenotypes associated with hearing loss. RESULTS: The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12 human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMT1 gene). Although some methylation studies reported significant differences in CpG methylation in diverse gene promoters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replication cohort that supported a regulatory role for CpG methylation in the genes TCF25 and POLE in ARHI. Conversely, several studies have independently confirmed pathogenic mutations within exon 21 of the DNMT1 gene, which encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants in DNMT1 and DNMT3A genes have also been reported in noise-induced hearing loss. CONCLUSIONS: Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes in complex disorders such as ARHI. Mutations in the DNMT1 gene are associated with ADCA-DN, suggesting the CpG methylation in hearing loss genes deserves further attention in hearing research.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Humanos , Metilação de DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Ilhas de CpG/genética , Epigênese Genética/genética , Perda Auditiva/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , Perda Auditiva Neurossensorial/genética , Narcolepsia/genética
8.
Cell Syst ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981487

RESUMO

Systems like the prototypical lac operon can reliably hold repression of transcription upon DNA replication across cell cycles with just 10 repressor molecules per cell and behave as if they were at equilibrium. The origin of this phenomenology is still an unresolved question. Here, we develop a general theory to analyze strong perturbations in quasi-equilibrium systems and use it to quantify the effects of DNA replication in gene regulation. We find a scaling law linking actual with predicted equilibrium transcription via a single kinetic parameter. We show that even the lac operon functions beyond the physical limits of naive regulation through compensatory mechanisms that suppress non-equilibrium effects. Synthetic systems without adjuvant activators, such as the cAMP receptor protein (CRP), lack this reliability. Our results provide a rationale for the function of CRP, beyond just being a tunable activator, as a mitigator of cell cycle perturbations.

9.
Adv Sci (Weinh) ; : e2404313, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952047

RESUMO

Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.

10.
Front Bioeng Biotechnol ; 12: 1346810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957576

RESUMO

Uncovering the stimulus-response histories that give rise to cell fates and behaviors is an area of great interest in developmental biology, tissue engineering, and regenerative medicine. A comprehensive accounting of cell experiences that lead to the development of organs and tissues can help us to understand developmental anomalies that may underly disease. Perhaps more provocatively, such a record can also reveal clues as to how to drive cell collective decision-making processes, which may yield predictable cell-based therapies or facilitate production of tissue substitutes for transplantation or in vitro screening of prospective therapies to mitigate disease. Toward this end, various methods have been applied to molecularly trace developmental trajectories and record interaction histories of cells. Typical methods involve artificial gene circuits based on recombinases that activate a suite of fluorescent reporters or CRISPR-Cas9 genome writing technologies whose nucleic acid-based record keeping serves to chronicle cell-cell interactions or past exposure to stimuli of interests. Exciting expansions of the synthetic biology toolkit with artificial receptors that permit establishment of defined input-to-output linkages of cell decision-making processes opens the door to not only record cell-cell interactions, but to also potentiate directed manipulation of the outcomes of such interactions via regulation of carefully selected transgenes. Here, we combine CRISPR-based strategies to genetically and epigenetically manipulate cells to express components of the synthetic Notch receptor platform, a widely used artificial cell signaling module. Our approach gives rise to the ability to conditionally record interactions between human cells, where the record of engagement depends on expression of a state-specific marker of a subset of cells in a population. Further, such signal-competent interactions can be used to direct differentiation of human embryonic stem cells toward pre-selected fates based on assigned synNotch outputs. We also implemented CRISPR-based manipulation of native gene expression profiles to bias outcomes of cell engagement histories in a targeted manner. Thus, we present a useful strategy that gives rise to both state-specific recording of cell-cell interactions as well as methods to intentionally influence products of such cell-cell exchanges.

11.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948758

RESUMO

Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.

12.
Cell Syst ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986625

RESUMO

Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.

13.
Genome Biol ; 25(1): 184, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978133

RESUMO

BACKGROUND: Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. RESULTS: We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall twofold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in type 1 diabetes. CONCLUSIONS: In summary, our results indicate that advances in deep learning models for the discovery of disease-causal variants within candidate silencers effectively "double" the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença , Aprendizado Profundo , Esquizofrenia/genética , Elementos Silenciadores Transcricionais/genética
15.
Gut Microbes ; 16(1): 2369339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962965

RESUMO

The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Estresse Oxidativo , Salmonella enterica , Animais , Ferro/metabolismo , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Virulência/genética , Fenóis/metabolismo , Tiazóis/metabolismo , Humanos , Infecções por Salmonella/microbiologia , Transferência Genética Horizontal , Feminino , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Plasmídeos/genética
16.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965312

RESUMO

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Assuntos
Células Epiteliais , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA
17.
J Biol Chem ; 300(7): 107457, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866324

RESUMO

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

18.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880992

RESUMO

Although evolution is driven by changes in how regulatory pathways control development, we know little about the molecular details underlying these transitions. The TRA-2 domain that mediates contact with TRA-1 is conserved in Caenorhabditis. By comparing the interaction of these proteins in two species, we identified a striking change in how sexual development is controlled. Identical mutations in this domain promote oogenesis in Caenorhabditis elegans but promote spermatogenesis in Caenorhabditis briggsae. Furthermore, the effects of these mutations involve the male-promoting gene fem-3 in C. elegans but are independent of fem-3 in C. briggsae. Finally, reciprocal mutations in these genes show that C. briggsae TRA-2 binds TRA-1 to prevent expression of spermatogenesis regulators. By contrast, in C. elegans TRA-1 sequesters TRA-2 in the germ line, allowing FEM-3 to initiate spermatogenesis. Thus, we propose that the flow of information within the sex determination pathway has switched directions during evolution. This result has important implications for how evolutionary change can occur.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Processos de Determinação Sexual , Espermatogênese , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Masculino , Espermatogênese/genética , Feminino , Caenorhabditis/genética , Evolução Biológica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação , Oogênese/genética , Evolução Molecular , Autofertilização , Proteínas de Ligação a DNA , Fatores de Transcrição
19.
Brain ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38943682

RESUMO

The histone methyltransferase ASH1L plays a crucial role in regulating gene expression across various organ systems during development, yet its role in brain development remains largely unexplored. Over 130 individuals with autism harbour heterozygous loss-of-function ASH1L variants, and population studies confirm it as a high-risk autism gene. Previous studies on Ash1 l deficient mice have reported autistic-like behaviours and provided insights into the underlying neuropathophysiology. In this study, we used mice with a cre-inducible deletion of Ash1 l exon 4, which results in a frame shift and premature stop codon (p.V1693Afs*2). Our investigation evaluated the impact of Ash1 l loss-of-function on survival and craniofacial skeletal development. Using a tamoxifen-inducible cre strain, we targeted Ash1 l knockout early in cortical development (Emx1-Cre-ERT2; e10.5). Immunohistochemistry was utilized to assess cortical lamination, while EdU incorporation aided in birthdating cortical neurons. Additionally, single-cell RNA sequencing was employed to compare cortical cell populations and identify genes with differential expression. At e18.5, the proportion of homozygous Ash1 l germline knockout embryos appeared normal; however, no live Ash1 l null pups were present at birth (e18.5: n = 77, P = 0.90; p0: n = 41, P = 0.00095). Notably, Ash1l-/- exhibited shortened nasal bones (n = 31, P = 0.017). In the cortical-specific knockout model, SATB2 neurons showed increased numbers (n = 6/genotype, P = 0.0001) and were distributed through the cortical plate. Birthdating revealed generation of ectopically placed deep layer neurons that express SATB2 (e13.5 injection: n = 4/genotype, P = 0.0126). Single cell RNA sequencing revealed significant differences in gene expression between control and mutant upper layer neurons, leading to distinct clustering. Pseudotime analysis indicated that the mutant cluster followed an altered cell differentiation trajectory. This study underscores the essential role of Ash1 l in postnatal survival and normal craniofacial development. In the cortex, ASH1L exerts broad effects on gene expression and is indispensable for determining the fate of upper layer cortical neurons. These findings provide valuable insights into the potential mechanisms of ASH1L neuropathology, shedding light on its significance in neurodevelopmental disorders like autism.

20.
Vaccines (Basel) ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932321

RESUMO

Understanding gene expression changes in chicks after vaccination against Newcastle Disease (ND) can reveal vaccine biomarkers. There are limited data on chicks' early immune response after ND vaccination. Two trials focused on this knowledge gap. In experiment one, 42 13-day-old specific-pathogen-free (SPF) chicks were used. Harderian glands (Hgs) and tracheas (Tcs) from five birds per group were sampled at 12, 24, and 48 h post-vaccination (hpv) to evaluate the gene transcription levels by RNA sequencing (RNA-seq) and RT-qPCR. The results of RNA-seq were compared by glmFTest, while results of RT-qPCR were compared by t-test. With RNA-seq, a significant up-regulation of interferon-related genes along with JAK-STAT signaling pathway regulation was observed in the Hgs at 24 hpv. None of the differentially expressed genes (DEGs) identified by RNA-seq were positive for RT-qPCR. Experiment 2 used 112 SPF and commercial chickens that were 1 day old and 14 days old. Only the commercial birds had maternal antibodies for Newcastle Disease virus (NDV). By RNA-seq, 20 core DEGs associated with innate immunity and viral genome replication inhibition were identified. Genes previously unlinked to NDV response, such as USP41, were identified. This research present genes with potential as immunity biomarkers for vaccines, yet further investigation is needed to correlate the core gene expression with viral shedding post-vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...