Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38972179

RESUMO

Typical 'omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex 'omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As 'omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.

2.
Function (Oxf) ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38985004

RESUMO

A neurological dogma is that the contralateral effects of brain injury are set through crossed descending neural tracts. We have recently identified a novel topographic neuroendocrine system (T-NES) that operates via a humoral pathway and mediates the left-right side-specific effects of unilateral brain lesions. In rats with completely transected thoracic spinal cords, unilateral injury to the hindlimb sensorimotor cortex produced hindlimb postural asymmetry with contralateral hindlimb flexion, a proxy for neurological deficit. Here, we investigated in acute experiments whether T-NES consists of left and right counterparts and whether they differ in neural and molecular mechanisms and their operating patterns, which may be ipsi- or contra-lateral relative to the side of brain injury. We demonstrated that left and right-sided hormonal signaling is differentially blocked by the selective opioid antagonists. The effects of the left-brain lesion were inhibited by antagonists of the δ- and κ-opioid receptors, whereas those of the right brain lesion were inhibited by a µ-opioid antagonist. Left and right neurohormonal signaling differed in targeting the afferent spinal mechanisms. Bilateral deafferentation of the lumbar spinal cord abolished the hormone-mediated effects of the left-brain injury but not the right-sided lesion. The sympathetic nervous system was ruled out as a brain-to-spinal cord signaling pathway since the hindlimb responses were induced in rats with cervical spinal cord transections that were rostral to the preganglionic sympathetic neurons. Analysis of gene-gene co-expression patterns identified the left- and right-side-specific gene regulatory networks that were coordinated via the humoral pathway across the hypothalamus and lumbar spinal cord. The coordination was ipsilateral and disrupted by brain injury. These findings suggest that T-NES is bipartite, and that its left and right counterparts contribute to contralateral neurological deficits through distinct neural mechanisms, and may enable ipsilateral regulation of molecular and neural processes across distant neural areas along the neuraxis.

3.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980373

RESUMO

Inferring gene regulatory networks (GRNs) allows us to obtain a deeper understanding of cellular function and disease pathogenesis. Recent advances in single-cell RNA sequencing (scRNA-seq) technology have improved the accuracy of GRN inference. However, many methods for inferring individual GRNs from scRNA-seq data are limited because they overlook intercellular heterogeneity and similarities between different cell subpopulations, which are often present in the data. Here, we propose a deep learning-based framework, DeepGRNCS, for jointly inferring GRNs across cell subpopulations. We follow the commonly accepted hypothesis that the expression of a target gene can be predicted based on the expression of transcription factors (TFs) due to underlying regulatory relationships. We initially processed scRNA-seq data by discretizing data scattering using the equal-width method. Then, we trained deep learning models to predict target gene expression from TFs. By individually removing each TF from the expression matrix, we used pre-trained deep model predictions to infer regulatory relationships between TFs and genes, thereby constructing the GRN. Our method outperforms existing GRN inference methods for various simulated and real scRNA-seq datasets. Finally, we applied DeepGRNCS to non-small cell lung cancer scRNA-seq data to identify key genes in each cell subpopulation and analyzed their biological relevance. In conclusion, DeepGRNCS effectively predicts cell subpopulation-specific GRNs. The source code is available at https://github.com/Nastume777/DeepGRNCS.


Assuntos
Aprendizado Profundo , Redes Reguladoras de Genes , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , RNA-Seq/métodos
4.
Biosystems ; 242: 105260, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925338

RESUMO

Focusing on the opposing ways of thinking of philosophers and scientists to explain the generation of form in biological development, I show that today's controversies over explanations of early development bear fundamental similarities to the dichotomy of preformation theory versus epigenesis in Greek antiquity. They are related to the acceptance or rejection of the idea of a physical form of what today would be called information for the generating of the embryo as a necessary pre-requisite for specific development and heredity. As a recent example, I scrutinize the dichotomy of genomic causality versus self-organization in 20th and 21st century theories of the generation of form. On the one hand, the generation of patterns and form, as well as the constant outcome in development, are proposed to be causally related to something that is "preformed" in the germ cells, the nucleus of germ cells, or the genome. On the other hand, it is proposed that there is no pre-existing form or information, and development is seen as a process where genuinely new characters emerge from formless matter, either by immaterial "forces of life," or by physical-chemical processes of self-organization. I also argue that these different ways of thinking and the research practices associated with them are not equivalent, and maintain that it is impossible to explain the generation of form and constant outcome of development without the assumption of the transmission of pre-existing information in the form of DNA sequences in the genome. Only in this framework of "preformed" information can "epigenesis" in the form of physical and chemical processes of self-organization play an important role.

5.
Biochem Soc Trans ; 52(3): 1503-1514, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38856037

RESUMO

Despite recent biotechnological breakthroughs, cancer risk prediction remains a formidable computational and experimental challenge. Addressing it is critical in order to improve prevention, early detection and survival rates. Here, I briefly summarize some key emerging theoretical and computational challenges as well as recent computational advances that promise to help realize the goals of cancer-risk prediction. The focus is on computational strategies based on single-cell data, in particular on bottom-up network modeling approaches that aim to estimate cancer stemness and dedifferentiation at single-cell resolution from a systems-biological perspective. I will describe two promising methods, a tissue and cell-lineage independent one based on the concept of diffusion network entropy, and a tissue and cell-lineage specific one that uses transcription factor regulons. Application of these tools to single-cell and single-nucleus RNA-seq data from stages prior to invasive cancer reveal that they can successfully delineate the heterogeneous inter-cellular cancer-risk landscape, identifying those cells that are more likely to turn cancerous. Bottom-up systems biological modeling of single-cell omic data is a novel computational analysis paradigm that promises to facilitate the development of preventive, early detection and cancer-risk prediction strategies.


Assuntos
Biologia Computacional , Neoplasias , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Biologia Computacional/métodos
6.
Sci Rep ; 14(1): 13942, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886541

RESUMO

Dilated cardiomyopathy (DCM) is a common cause of heart failure, thromboembolism, arrhythmias, and sudden cardiac death. The quality of life and long-term survival rates of patients with dilated DCM have greatly improved in recent decades. Nevertheless, the clinical prognosis for DCM patients remains unfavorable. The primary driving factors underlying the pathogenesis of DCM remain incompletely understood. The present study aimed to identify driving factors underlying the pathogenesis of DCM from the perspective of gene regulatory networks. Single-cell RNA sequencing data and bulk RNA data were obtained from the Gene Expression Omnibus (GEO) database. Differential gene analysis, single-cell genomics analysis, and functional enrichment analysis were conducted using R software. The construction of Gene Regulatory Networks was performed using Python. We used the pySCENIC method to analyze the single-cell data and identified 401 regulons. Through variance decomposition, we selected 19 regulons that showed significant responsiveness to DCM. Next, we employed the ssGSEA method to assess regulons in two bulk RNA datasets. Significant statistical differences were observed in 9 and 13 regulons in each dataset. By intersecting these differentiated regulons and identifying shared targets that appeared at least twice, we successfully pinpointed three differentially expressed targets across both datasets. In this study, we assessed and identified 19 gene regulatory networks that were responsive to the disease. Furthermore, we validated these networks using two bulk RNA datasets of DCM. The elucidation of dysregulated regulons and targets (CDKN1A, SAT1, ZFP36) enhances the molecular understanding of DCM, aiding in the development of tailored therapies for patients.


Assuntos
Cardiomiopatia Dilatada , Redes Reguladoras de Genes , Análise de Sequência de RNA , Análise de Célula Única , Cardiomiopatia Dilatada/genética , Análise de Célula Única/métodos , Humanos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , RNA/genética , RNA/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica
7.
Comput Biol Med ; 178: 108692, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38879932

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) stands as the most prevalent subtype among lung cancers. Interactions between stromal and cancer cells influence tumor growth, invasion, and metastasis. However, the regulatory mechanisms of stromal cells in the lung adenocarcinoma tumor microenvironment remain unclear. This study seeks to elucidate the regulatory connections among critical pathogenic genes and their associated expression variations within distinct stromal cell subtypes. METHOD: Analysis and investigation were conducted on a total of 114,019 single-cell RNA data and 346 The Cancer Genome Atlas (TCGA) LUAD-related samples using bioinformatics and statistical algorithms. Differential gene expression analysis was performed for tumor samples and controls, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differential genes between stromal cells and other cell clusters were identified and intersected with the differential genes from TCGA. We employed a combination of LASSO regression and multivariable Cox regression to identify the ultimate set of pathogenic gene. Survival models were trained to predict the relationship between patient survival and these pathogenic genes. Analysis of transcription factor (TF) cell specificity and pseudotime trajectories within stromal cell subpopulations revealed that vascular endothelial cells (ECs) and matrix cancer-associated fibroblasts (CAFs) are key in regulation of the prognosis-associated genes CAV2, COL1A1, TIMP1, ETS2, AKAP12, ID1 and COL1A2. RESULTS: Seven pathogenic genes associated with LUAD in stromal cells were identified and used to develop a survival model. High expression of these genes is linked to a greater risk of poor survival. Stromal cells were categorized into eight subtypes and one unannotated cluster. Mesothelial cells, vascular endothelial cells (ECs), and matrix cancer-associated fibroblasts (CAFs) showed cell-specific regulation of the pathogenic genes. CONCLUSIONS: The seven disease-causing genes in vascular ECs and matrix CAFs can be used to detect the survival status of LUAD patients, providing new directions for future targeted drug design.

8.
Genome Biol Evol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753011

RESUMO

Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription-factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.

9.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38712171

RESUMO

Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.

10.
medRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38699303

RESUMO

Background: Single-cell technologies have unveiled various transcriptional states in different brain cell types. Transcription factors (TFs) regulate the expression of related gene sets, thereby controlling these diverse expression states. Apolipoprotein E (APOE), a pivotal risk-modifying gene in Alzheimer's disease (AD), is expressed in specific glial transcriptional states associated with AD. However, it is still unknown whether the upstream regulatory programs that modulate its expression are shared across brain cell types or specific to microglia and astrocytes. Methods: We used pySCENIC to construct state-specific gene regulatory networks (GRNs) for resting and activated cell states within microglia and astrocytes based on single-nucleus RNA sequencing data from AD patients' cortices from the Knight ADRC-DIAN cohort. We then identified replicating TF using data from the ROSMAP cohort. We identified sets of genes co-regulated with APOE by clustering the GRN target genes and identifying genes differentially expressed after the virtual knockout of TFs regulating APOE. We performed enrichment analyses on these gene sets and evaluated their overlap with genes found in AD GWAS loci. Results: We identified an average of 96 replicating regulators for each microglial and astrocyte cell state. Our analysis identified the CEBP, JUN, FOS, and FOXO TF families as key regulators of microglial APOE expression. The steroid/thyroid hormone receptor families, including the THR TF family, consistently regulated APOE across astrocyte states, while CEBP and JUN TF families were also involved in resting astrocytes. AD GWAS-associated genes (PGRN, FCGR3A, CTSH, ABCA1, MARCKS, CTSB, SQSTM1, TSC22D4, FCER1G, and HLA genes) are co-regulated with APOE. We also uncovered that APOE-regulating TFs were linked to circadian rhythm (BHLHE40, DBP, XBP1, CREM, SREBF1, FOXO3, and NR2F1). Conclusions: Our findings reveal a novel perspective on the transcriptional regulation of APOE in the human brain. We found a comprehensive and cell-type-specific regulatory landscape for APOE, revealing distinct and shared regulatory mechanisms across microglia and astrocytes, underscoring the complexity of APOE regulation. APOE-co-regulated genes might also affect AD risk. Furthermore, our study uncovers a potential link between circadian rhythm disruption and APOE regulation, shedding new light on the pathogenesis of AD.

11.
J Exp Bot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812358

RESUMO

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located - in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled ANAC102's dual role in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.

12.
Comput Biol Med ; 174: 108484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643595

RESUMO

Accurately identifying cancer driver genes (CDGs) is crucial for guiding cancer treatment and has recently received great attention from researchers. However, the high complexity and heterogeneity of cancer gene regulatory networks limit the precition accuracy of existing deep learning models. To address this, we introduce a model called SCIS-CDG that utilizes Schur complement graph augmentation and independent subspace feature extraction techniques to effectively predict potential CDGs. Firstly, a random Schur complement strategy is adopted to generate two augmented views of gene network within a graph contrastive learning framework. Rapid randomization of the random Schur complement strategy enhances the model's generalization and its ability to handle complex networks effectively. Upholding the Schur complement principle in expectations promotes the preservation of the original gene network's vital structure in the augmented views. Subsequently, we employ feature extraction technology using multiple independent subspaces, each trained with independent weights to reduce inter-subspace dependence and improve the model's expressiveness. Concurrently, we introduced a feature expansion component based on the structure of the gene network to address issues arising from the limited dimensionality of node features. Moreover, it can alleviate the challenges posed by the heterogeneity of cancer gene networks to some extent. Finally, we integrate a learnable attention weight mechanism into the graph neural network (GNN) encoder, utilizing feature expansion technology to optimize the significance of various feature levels in the prediction task. Following extensive experimental validation, the SCIS-CDG model has exhibited high efficiency in identifying known CDGs and uncovering potential unknown CDGs in external datasets. Particularly when compared to previous conventional GNN models, its performance has seen significant improved. The code and data are publicly available at: https://github.com/mxqmxqmxq/SCIS-CDG.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Humanos , Neoplasias/genética , Biologia Computacional/métodos , Aprendizado Profundo , Algoritmos
13.
BMC Pregnancy Childbirth ; 24(1): 329, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678187

RESUMO

BACKGROUND: This study aimed to establish a placental long non-coding RNA (lncRNA)-mRNA expression network for early-onset preeclampsia (early-onset PE). METHODS: The RNA sequencing data of the GSE14821 dataset were acquired. Several crucial lncRNAs and mRNAs were exerted based on the differential expression analysis of lncRNA and mRNA. By analyzing the differentially expressed lncRNA and mRNA, we constructed a regulatory network to explore the mechanism of the lncRNA in early onset preeclampsia. RESULTS: A total of 4436 differentially expressed lncRNAs (DElncRNAs) were identified in early-onset PE placenta samples compared with control placenta samples. Pearson correlation analysis revealed significant correlations between 3659 DElncRNAs and 372 DEmRNAs. KEGG analysis showed that the DEmRNAs were enriched in cytokine-cytokine receptor and hypoxia-inducible factor (HIF)-1 pathways. Several well-known early-onset PE-related mRNAs, such as vascular endothelial growth factor A (VEGFA) and VEGF receptor 1 (FLT1), were involved in the two pathways. Weighted gene co-expression network analysis and cis-regulatory analysis further suggested the involvement of the two pathways and potential DElncRNA-DEmRNA interactions in early-onset PE. Moreover, the upregulation of representative DElncRNAs, such as RP11-211G3.3 and RP11-65J21.3, and DEmRNAs, such as VEGFA and FLT1, were validated in clinical placenta samples from patients with early-onset PE by quantitative reverse transcription PCR. Importantly, overexpression of RP11-65J21.3 significantly promoted the proliferation of HTR-8 trophoblast cells at 72 h after transfection. CONCLUSIONS: In conclusion, we identified placental DElncRNAs of early-onset PE and established a DElncRNA-DEmRNA network that was closely related to the cytokine-cytokine receptor and HIF-1 pathways. Our results provide potential diagnostic markers and therapeutic targets for early-onset PE management.


Assuntos
Redes Reguladoras de Genes , Placenta , Pré-Eclâmpsia , RNA Longo não Codificante , RNA Mensageiro , Humanos , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Placenta/metabolismo , Adulto , Perfilação da Expressão Gênica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estudos de Casos e Controles
14.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683994

RESUMO

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Assuntos
Crista Neural , Análise de Célula Única , Xenopus laevis , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulação , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Transição Epitelial-Mesenquimal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Neurulação/genética , Neurulação/fisiologia , Diferenciação Celular
15.
Artif Intell Med ; 152: 102864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640702

RESUMO

Predicting the response of tumor cells to anti-tumor drugs is critical to realizing cancer precision medicine. Currently, most existing methods ignore the regulatory relationships between genes and thus have unsatisfactory predictive performance. In this paper, we propose to predict anti-tumor drug efficacy via learning the activity representation of tumor cells based on a priori knowledge of gene regulation networks (GRNs). Specifically, the method simulates the cellular biosystem by synthesizing a cell-gene activity network and then infers a new low-dimensional activity representation for tumor cells from the raw high-dimensional expression profile. The simulated cell-gene network mainly comprises known gene regulatory networks collected from multiple resources and fuses tumor cells by linking them to hotspot genes that are over- or under-expressed in them. The resulting activity representation could not only reflect the shallow expression profile (hotspot genes) but also mines in-depth information of gene regulation activity in tumor cells before treatment. Finally, we build deep learning models on the activity representation for predicting drug efficacy in tumor cells. Experimental results on the benchmark GDSC dataset demonstrate the superior performance of the proposed method over SOTA methods with the highest AUC of 0.954 in the efficacy label prediction and the best R2 of 0.834 in the regression of half maximal inhibitory concentration (IC50) values, suggesting the potential value of the proposed method in practice.


Assuntos
Antineoplásicos , Redes Reguladoras de Genes , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Medicina de Precisão/métodos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos
16.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576577

RESUMO

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

17.
Curr Med Chem ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561620

RESUMO

AIMS: To determine the cell types that promoted the progression of Parkinson's disease (PD) using the substantia nigra in the brain tissues derived from patients with PD and normal controls. BACKGROUND: PD is an incurable neurodegenerative disease that threatens the physical activity of the aging population, and the complex molecular mechanisms remain be comprehensively elucidated. OBJECTIVE: To describe potential disease-promoting cell types in PD and to provide a theoretical basis. METHODS: Single-cell nuclear sequencing data of nine PD samples and control samples from Gene Expression Omnibus (GEO) were included, and heterogeneous cell subpopulations in the substantia nigra were identified by annotation analysis. Potential pathogenic cell subpopulations of PD were determined based on the expression data of marker genes. Cell differentiation trajectories and communication networks were generated by Pseudotime trajectory analysis and cell communication analysis. Furthermore, single-- cell regulatory network inference and clustering (SCENIC) analysis was conducted to determine the regulatory network of transcription factor-target genes in PD. RESULTS: Among the nine cell subpopulations classified, RELN+neuron 3 showed reduced abundance and dopamine secretion capacity in PD and was therefore considered as a promoter of PD pathogenesis and progression. The regulatory network of MSRA action was involved in the developmental process of cells in the central nervous system, indicating that MSRA and its targets might serve as potential therapeutic targets for PD. RELN+neuron 3 had two directions of differentiation, specifically, branch 1 exhibited a high apoptotic profile and branch 2 exhibited a high cell death profile. In addition, the intensity of EPHA and EPHB signaling was attenuated between RELN+neuron 3 and other cell subpopulations. CONCLUSION: To conclude, this study identified a subpopulation of RELN+neuron 3 cells with markedly reduced abundance in the brain substantia nigra in PD. The MSRA-involved gene regulatory networks was considered as a novel therapeutic network for PD.

18.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581421

RESUMO

Boolean models of gene regulatory networks (GRNs) have gained widespread traction as they can easily recapitulate cellular phenotypes via their attractor states. Their overall dynamics are embodied in a state transition graph (STG). Indeed, two Boolean networks (BNs) with the same network structure and attractors can have drastically different STGs depending on the type of Boolean functions (BFs) employed. Our objective here is to systematically delineate the effects of different classes of BFs on the structural features of the STG of reconstructed Boolean GRNs while keeping network structure and biological attractors fixed, and explore the characteristics of BFs that drive those features. Using $10$ reconstructed Boolean GRNs, we generate ensembles that differ in BFs and compute from their STGs the dynamics' rate of contraction or 'bushiness' and rate of 'convergence', quantified with measures inspired from cellular automata (CA) that are based on the garden-of-Eden (GoE) states. We find that biologically meaningful BFs lead to higher STG 'bushiness' and 'convergence' than random ones. Obtaining such 'global' measures gets computationally expensive with larger network sizes, stressing the need for feasible proxies. So we adapt Wuensche's $Z$-parameter in CA to BFs in BNs and provide four natural variants, which, along with the average sensitivity of BFs computed at the network level, comprise our descriptors of local dynamics and we find some of them to be good proxies for bushiness. Finally, we provide an excellent proxy for the 'convergence' based on computing transient lengths originating at random states rather than GoE states.


Assuntos
Algoritmos , Modelos Genéticos , Redes Reguladoras de Genes , Autômato Celular
19.
Sci Total Environ ; 928: 172449, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615784

RESUMO

Nanoplastic represents an emerging abiotic stress facing modern agriculture, impacting global crop production. However, the molecular response of crop plants to this stress remains poorly understood at a spatiotemporal resolution. We therefore used RNA sequencing to profile the transcriptome expressed in rice (Oryza sativa) root and leaf organs at 1, 2, 4, and 8 d post exposure with nanoplastic. We revealed a striking similarity between the rice biomass dynamics in aboveground parts to that in belowground parts during nanoplastic stress, but transcriptome did not. At the global transcriptomic level, a total of 2332 differentially expressed genes were identified, with the majority being spatiotemporal specific, reflecting that nanoplastics predominantly regulate three processes in rice seedlings: (1) down-regulation of chlorophyll biosynthesis, photosynthesis, and starch, sucrose and nitrogen metabolism, (2) activation of defense responses such as brassinosteroid biosynthesis and phenylpropanoid biosynthesis, and (3) modulation of jasmonic acid and cytokinin signaling pathways by transcription factors. Notably, the genes involved in plant-pathogen interaction were shown to be successively modulated by both root and leaf organs, particularly plant disease defense genes (OsWRKY24, OsWRKY53, Os4CL3, OsPAL4, and MPK5), possibly indicating that nanoplastics affect rice growth indirectly through other biota. Finally, we associated biomass phenotypes with the temporal reprogramming of rice transcriptome by weighted gene co-expression network analysis, noting a significantly correlation with photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis that may reflect the mechanisms of biomass reduction. Functional analysis further identified PsbY, MYB, cytochrome P450, and AP2/ERF as hub genes governing these pathways. Overall, our work provides the understanding of molecular mechanisms of rice in response to nanoplastics, which in turn suggests how rice might behave in a nanoplastic pollution scenario.


Assuntos
Oryza , Poliestirenos , Transcriptoma , Oryza/genética , Oryza/fisiologia , Estresse Fisiológico , Fotossíntese , Regulação da Expressão Gênica de Plantas , Folhas de Planta
20.
Cell Regen ; 13(1): 9, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630195

RESUMO

Human hematopoiesis starts at early yolk sac and undergoes site- and stage-specific changes over development. The intrinsic mechanism underlying property changes in hematopoiesis ontogeny remains poorly understood. Here, we analyzed single-cell transcriptome of human primary hematopoietic stem/progenitor cells (HSPCs) at different developmental stages, including yolk-sac (YS), AGM, fetal liver (FL), umbilical cord blood (UCB) and adult peripheral blood (PB) mobilized HSPCs. These stage-specific HSPCs display differential intrinsic properties, such as metabolism, self-renewal, differentiating potentialities etc. We then generated highly co-related gene regulatory network (GRNs) modules underlying the differential HSC key properties. Particularly, we identified GRNs and key regulators controlling lymphoid potentiality, self-renewal as well as aerobic respiration in human HSCs. Introducing selected regulators promotes key HSC functions in HSPCs derived from human pluripotent stem cells. Therefore, GRNs underlying key intrinsic properties of human HSCs provide a valuable guide to generate fully functional HSCs in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...