Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(4): 85, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453711

RESUMO

KEY MESSAGE: The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.


Assuntos
Pequeno RNA não Traduzido , Solanum tuberosum , Solanum tuberosum/genética , Diploide , Genoma , Genômica , RNA Mensageiro , Pequeno RNA não Traduzido/genética
3.
Front Plant Sci ; 14: 1276727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107007

RESUMO

Introduction: The phenomenal expansion of angiosperms has prompted many investigations into the factors driving their diversification, but there remain significant gaps in our understanding of flowering plant species diversity. Methods: Using the crown age of families from five studies, we used a maximum likelihood approach to classify families as having poor, predicted or high species richness (SR) using strict consensus criteria. Using these categories, we looked for associations between family SR and i) the presence of an inferred familial ancestral polyploidization event, ii) 23 life history and floral traits compiled from previously published datasets and papers, and iii) sexual system (dioecy) or genetically determined self-incompatibility (SI) mating system using an updated version of our own database and iv) geographic distribution using a new database describing the global distribution of plant species/families across realms and biomes and inferred range. Results: We find that more than a third of angiosperm families (65%) had predicted SR, a large proportion (30.2%) were species poor, while few (4.8%) had high SR. Families with poor SR were less likely to have undergone an ancestral polyploidization event, exhibited deficits in diverse traits, and were more likely to have unknown breeding systems and to be found in only one or few biomes and realms, especially the Afrotropics or Australasia. On the other hand, families with high SR were more likely to have animal mediated pollination or dispersal, are enriched for epiphytes and taxa with an annual life history, and were more likely to harbour sporophytic SI systems. Mapping the global distribution of georeferenced taxa by their family DR, we find evidence of regions dominated by taxa from lineages with high vs low SR. Discussion: These results are discussed within the context of the literature describing "depauperons" and the factors contributing to low and high biodiversity in angiosperm clades.

4.
Front Plant Sci ; 13: 869423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072313

RESUMO

Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.

5.
3 Biotech ; 12(10): 274, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36110566

RESUMO

The superoxide dismutase (SOD) protein significantly influences the development and growth of plants and their reaction to abiotic stresses. However, little is known about the characteristics of rubber tree SOD genes and their expression changes under abiotic stresses. The present study recognized 11 SOD genes in the rubber tree genome, including 7 Cu/ZnSODs, 2 MnSODs, and 2 FeSODs. Except for HbFSD1, SODs were scattered on five chromosomes. The phylogenetic analysis of SOD proteins in rubber trees and a few other plants demonstrated that the SOD proteins contained three major subgroups. Moreover, the genes belonging to the same clade contained similar gene structures, which confirmed their classification further. The extension of the SOD gene family in the rubber tree was mainly induced by the segmental duplication events. The cis-acting components analysis showed that HbSODs were utilized in many biological procedures. The transcriptomics data indicated that the phosphorylation of the C-terminal domain of RNA polymerase II might control the cold response genes through the CBF pathway and activate the SOD system to respond to cold stress. The qRT-PCR results showed that the expression of HbCSD1 was significantly downregulated under drought and salt stresses, which might dominate the adaption capability to different stresses. Additionally, salt promoted the expression levels of HbMSD1 and HbMSD2, exhibiting their indispensable role in the salinity reaction. The study results will provide a theoretical basis for deep research on HbSODs in rubber trees. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03328-7.

6.
Plant Physiol Biochem ; 167: 385-389, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34404009

RESUMO

Lippia alba (Mill.) N.E. Brown (Verbenaceae), popularly known as "lemon balm" or "bushy matgrass", is widely used in folk medicine due to its anti-inflammatory, antispasmodic, analgesic, and digestive properties. It was described as an autopolyploid complex with five cytotypes (2n = 30, 38, 45, 60 and 90). To enhance our understanding of the biological variation of the species, we investigated, comparatively, the proteomic profile of all ploidal levels (diploid, aneuploid, triploid, tetraploid, and hexaploid). Leaf proteins were extracted with subsequent separation by two-dimensional electrophoresis, spot analysis, and protein identification by mass spectrometry. By comparing the proteomic profile of diploid accession to the profile of the other ploidal levels we identified differential expression between the analysed spots. We identified 34 proteins with differential expression between the ploidal levels in comparison with the diploid. The identified proteins seem to play relevant roles in the primary metabolism of L. alba suggesting that a specific set of proteins was selected during the polyploidization process, being the triploid the most different one. Given that protein composition can substantially affect the desired therapeutic effect, we posit that further combination of proteomic and metabolomic studies may help to unravel genetic variations and phenotypic profiles in L. alba.


Assuntos
Lippia , Diploide , Poliploidia , Proteínas , Proteômica
7.
Front Plant Sci ; 12: 633310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643360

RESUMO

The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient γ-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.

8.
Plant J ; 103(2): 726-741, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32270526

RESUMO

Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.


Assuntos
Fabaceae/genética , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fabaceae/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Phaseolus/genética , Filogenia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Glycine max/genética , Fatores de Transcrição/metabolismo , Vitis/genética
9.
Front Plant Sci ; 11: 154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194586

RESUMO

Polyploidy is more than two chromosomal sets per nucleus, as the allotetraploid Coffea arabica. Due to allotetraploidy, C. arabica shows different phenotypes compare to diploid Coffea species, highlighting by beverage quality produced from its grains. Looking for the possibility of new phenotypes coupled with economic feature, considerable progress since 60's was reached for synthetic chromosome set doubling (CSD) in vitro, involving especially the antitubulin compounds, biological material, and used tissue culture pathway as the indirect somatic embryogenesis (ISE). Here, we aimed to regenerate autotetraploid and auto-alloctaploid plantlets of Coffea canephora and C. arabica, respectively, from a novel in vitro CSD procedure for Coffea. Exploring the ISE pathway, we treated the cellular aggregate suspensions (CAS) with 0.0 (control), 0.5, 1.5, or 2.5 mM of colchicine solution for 48, 72, or 96 h and maintained in liquid medium under constant orbital shaking. After transferring the CAS to semisolid media for somatic embryo regeneration, we considered it as cellular mass. Mature cotyledonary somatic embryos were only regenerated from cellular masses treated with 2.5 mM/48 h and 2.5 mM/72 h for C. canephora and with 0.5 mM/48 h for C. arabica. Evaluating the DNA ploidy level and the chromosome counting revealed that 36 (34.9%) plantlets of C. canephora were autotetraploids (4C = 2.86 pg, 2n = 4x = 44) and 61 (21.1%) of C. arabica were auto-alloctaploids (4C = 5.24 pg, 2n = 8x = 88). The CSD procedure, exploring the CAS proliferation and ISE pathway, promoted whole-genome duplication and resulted in a relatively high number of solid polyploids of both Coffea species. Due to distinct responses, DNA sequence fidelity (genetic) and global level of 5-methylcytosine (epigenetic) were evaluated. We observed that the increase of 5-methylcytosine levels was associated with somatic embryo regeneration from cells showing DNA sequence fidelity for the tested SSR primers. In conclusion, the adopted procedure for in vitro CSD is reproducible for induction, regeneration and propagation of Coffea polyploids and potentially other shrubbery and woody species. In view of the novelty of this procedure to generate new germplasm, we show the key issues and the steps of the CSD procedure.

10.
Am J Bot ; 107(3): 466-476, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32115694

RESUMO

PREMISE: Plant genomes vary in size and complexity due in part to polyploidization. Latitudinal analyses of polyploidy are biased toward floras of temperate regions, with much less research done in the tropics. Lippia alba has been described as a tropical polyploid complex with diploid, triploid, tetraploid, and hexaploid accessions. However, no data regarding relationships among the ploidal levels and their origins have been reported. Our goals are to clarify the relationships among accessions of Lippia alba and the origins of each ploidal level. METHODS: We investigated 98 samples representing all five geographical regions of Brazil and all ploidal levels using microsatellite (SSR) allelic variation and DNA sequences of ITS and trnL-F. Nine morphological structures were analyzed from 33 herbarium samples, and the chemical compounds of 78 accessions were analyzed by GC-MS. RESULTS: Genetic distance analysis, the alignment block pattern, as well as RAxML and Bayesian trees showed that accessions grouped by ploidal level. The triploids form a well-defined group that originated from a single group of diploids. The tetraploids and hexaploid grouped together in SSR and trnL-F analyses. The recovered groups agree with chemical data and morphology. CONCLUSIONS: The accessions grouped by ploidal level. Only one origin of triploids from a single group of diploids was observed. The tetraploid origin is uncertain; however, it appears to have contributed to the origin of the hexaploid. This framework reveals linkages among the ploidal levels, providing new insights into the evolution of a polyploid complex of tropical plants.


Assuntos
Lippia , Teorema de Bayes , Brasil , Humanos , Filogenia , Poliploidia
11.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861318

RESUMO

Utricularia belongs to Lentibulariaceae, a widespread family of carnivorous plants that possess ultra-small and highly dynamic nuclear genomes. It has been shown that the Lentibulariaceae genomes have been shaped by transposable elements expansion and loss, and multiple rounds of whole-genome duplications (WGD), making the family a platform for evolutionary and comparative genomics studies. To explore the evolution of Utricularia, we estimated the chromosome number and genome size, as well as sequenced the terrestrial bladderwort Utricularia reniformis (2n = 40, 1C = 317.1-Mpb). Here, we report a high quality 304 Mb draft genome, with a scaffold NG50 of 466-Kb, a BUSCO completeness of 87.8%, and 42,582 predicted genes. Compared to the smaller and aquatic U. gibba genome (101 Mb) that has a 32% repetitive sequence, the U. reniformis genome is highly repetitive (56%). The structural differences between the two genomes are the result of distinct fractionation and rearrangements after WGD, and massive proliferation of LTR-retrotransposons. Moreover, GO enrichment analyses suggest an ongoing gene birth-death-innovation process occurring among the tandem duplicated genes, shaping the evolution of carnivory-associated functions. We also identified unique patterns of developmentally related genes that support the terrestrial life-form and body plan of U. reniformis. Collectively, our results provided additional insights into the evolution of the plastic and specialized Lentibulariaceae genomes.


Assuntos
Meio Ambiente , Evolução Molecular , Interação Gene-Ambiente , Genoma de Planta , Genômica , Lamiales/genética , Adaptação Biológica , Carnivoridade , Mapeamento Cromossômico , Biologia Computacional/métodos , Duplicação Gênica , Genômica/métodos , Cariotipagem , Anotação de Sequência Molecular , Filogenia , Retroelementos , Sequências de Repetição em Tandem
12.
Mol Plant ; 12(4): 506-520, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630074

RESUMO

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes.


Assuntos
Cucurbita/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , Evolução Molecular , Cinética , Filogenia
13.
Trends Genet ; 35(1): 42-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366621

RESUMO

Studies on the fate of Saccharomyces cerevisiae paralogous gene pairs that arose through a whole-genome duplication event have shown diversification of retained duplicated genes. Paralogous functional specialization often results in improved function and/or novel function that could contribute to the adaptation of the organism to a new lifestyle. Here, we analyze and discuss particular case studies of paralogous functional diversification that could have played a role in the acquisition of yeast fermentative metabolism.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Duplicação Gênica/genética , Filogenia , Saccharomyces cerevisiae/metabolismo
14.
Genet Mol Biol, v. 42, n. 2, p. 436-444, jun. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2784

RESUMO

Two allopatric populations of Brazilian diploid and tetraploid Odontophrynus americanus species complex, both from São Paulo state, had their blood hemoglobin biochemically analyzed. In addition, these specimens were cytogenetically characterized. Biochemical characterization of hemoglobin expression showed a distinct banding pattern between the allopatric specimens. Besides this, two distinct phenotypes, not linked to ploidy, sex, or age, were observed in adult animals of both populations. Phenotype A exhibits dark-colored body with small papillae, ogival-shaped jaw with reduced interpupillary distance and shorter hind limbs. Phenotype B shows yellowish-colored body with larger papillae, arch-shaped jaw with broader interpupillary distance and longer hind limbs. Intermediate phenotypes were also found. Considering the geographical isolation of both populations, differences in chromosomal secondary constrictions and distinct hemoglobins banding patterns, these data indicate that 2n and 4n populations represent cryptic species in the O. americanus species complex. The observed phenotypic diversity can be interpreted as population genetic variability. Eventually future data may indicate a probable beginning of speciation in these Brazilian frogs. Such inter- and intrapopulational differentiation/speciation process indicates that O. americanus species complex taxonomy deserves further evaluation by genomics and metabarcoding communities, also considering the pattern of hemoglobin expression, in South American frogs.

15.
Plant Mol Biol ; 97(4-5): 435-449, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29956113

RESUMO

KEY MESSAGE: Here we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels. Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways. Here we report the systematic identification and classification of GID1s in 54 plants genomes, encompassing from bryophytes and lycophytes, to several monocots and eudicots. We investigated the evolutionary relationship of GID1s using a comparative genomics framework and found strong support for a previously proposed phylogenetic classification of this family in land plants. We identified lineage-specific expansions of particular subfamilies (i.e. GID1ac and GID1b) in different eudicot lineages (e.g. GID1b in legumes). Further, we found both, shared and divergent structural features between GID1ac and GID1b subgroups in eudicots that provide mechanistic insights on their functions. Gene expression data from several species show that at least one GID1 gene is expressed in every sampled tissue, with a strong bias of GID1b expression towards underground tissues and dry legume seeds (which typically have low GA levels). Taken together, our results indicate that GID1ac retained canonical GA signaling roles, whereas GID1b specialized in conditions of low GA concentrations. We propose that this functional specialization occurred initially at the gene expression level and was later fine-tuned by mutations that conferred greater GA affinity to GID1b, including a Phe residue in the GA-binding pocket. Finally, we discuss the importance of our findings to understand the diversification of GA perception mechanisms in land plants.


Assuntos
Embriófitas/genética , Genômica , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Éxons/genética , Íntrons/genética , Modelos Moleculares , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Transdução de Sinais
16.
Mol Phylogenet Evol ; 120: 33-42, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222062

RESUMO

Plants are successful paleopolyploids. The wide diversity of land plants is driven strongly by their gene duplicates undergoing distinct evolutionary fates after duplication. We used genomic resources from 35 model plant species to unravel the evolutionary fate of gene copies (paralogs) of the cobalamin-independent methionine synthase (metE) gene family across the land plants. To explore genealogical relationships and characterize positive selection as a driving force in the evolution of metE paralogs within a single species, we carried out complementary analyses on genomic data of 32 genotypes of soybean. The size of the metE gene family remained small across the land plants; most of the studied species possessed 1-6 paralogs. Gene products were either cytosolic or chloroplastic; this dual subcellular distribution arose early during the divergence of the land plants and reached all extant lineages. Biased gene loss and gene retention events took place multiple times; recurrent evolution remodeled redundant metE paralogs to recover and maintain the dual subcellular distribution of MetE. Shared whole-genome duplication events gave rise to the metE paralogs of both soybean and Medicago truncatula. In soybean, the ancestral paralog pair GlymaPP2A encoded a cytosolic isoform of MetE, was under strong purifying selection, and retained high levels of expression across eight RNA-seq expression libraries. The daughters GlymaPP1 and GlymaPP2B showed accelerated rates of evolution, accumulated many sites predicted to be under positive selection, and possessed low levels of expression. Our results suggest that the metE paralogs of soybean follow Ohno's neofunctionalization model of gene duplicate evolution.


Assuntos
Embriófitas/enzimologia , Embriófitas/genética , Evolução Molecular , Genes de Plantas , Metiltransferases/genética , Família Multigênica , Teorema de Bayes , Duplicação Gênica , Perfilação da Expressão Gênica , Genes Duplicados , Genótipo , Filogenia , Homologia de Sequência do Ácido Nucleico , Glycine max/enzimologia , Glycine max/genética
17.
Planta ; 246(5): 999-1018, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752264

RESUMO

MAIN CONCLUSION: 43 HbPLCPs representing nine subfamilies or 20 orthologous groups were found in rubber, where paralogs were resulted from the recent WGD and local duplication. Several senescence-associated genes were also identified. Papain-like cysteine proteases (PLCPs) comprise a large family of proteolytic enzymes involved in plant growth and development, seed germination, organ senescence, immunity, and stress response. Despite their importance and the extensive research in the model plant Arabidopsis thaliana, little information is available on rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study performed a genome-wide identification of PLCP family genes in rubber, resulting in a relatively high number of 43 members. The phylogenetic analysis assigned these genes into nine subfamilies, i.e., RD21 (6), CEP (4), XCP (4), XBCP3 (2), THI (1), SAG12 (18), RD19 (4), ALP (2), and CTB (2). Most of them were shown to have orthologs in Arabidopsis; however, several members in SAG12, CEP and XBCP3 subfamilies form new groups as observed in other core eudicots such as Manihot esculenta, Ricinus communis, Populus trichocarpa, and Vitis vinifera. Based on an expert sequence comparison, 20 orthologous groups (OGs) were proposed for core eudicots, and rubber paralogs were shown to be resulted from the recent whole-genome duplication (WGD) as well as local duplication. Transcriptional profiling showed distinct expression pattern of different members across various tissues, e.g., root, leaf, bark, laticifer, flower, and seed. By using the senescence-specific HbSAG12H1 as the indicator, the transcriptome of senescent rubber leaves was deeply sequenced and several senescence-associated PLCP genes were identified. Results obtained from this study provide valuable information for future functional analysis and utilization of PLCP genes in Hevea and other species.


Assuntos
Cisteína Proteases/genética , Genoma de Planta/genética , Hevea/enzimologia , Família Multigênica , Borracha/metabolismo , Transcriptoma , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genômica , Hevea/genética , Especificidade de Órgãos , Papaína/genética , Filogenia , Proteínas de Plantas/genética
18.
Gen Comp Endocrinol ; 250: 85-94, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28622977

RESUMO

Evolutionary studies of genes that have been functionally characterized and whose variation has been associated with pathological conditions represent an opportunity to understand the genetic basis of pathologies. α2-Adrenoreceptors (ADRA2) are a class of G protein-coupled receptors that regulate several physiological processes including blood pressure, platelet aggregation, insulin secretion, lipolysis, and neurotransmitter release. This gene family has been extensively studied from a molecular/physiological perspective, yet much less is known about its evolutionary history. Accordingly, the goal of this study was to investigate the evolutionary history of α2-adrenoreceptors (ADRA2) in vertebrates. Our results show that in addition to the three well-recognized α2-adrenoreceptor genes (ADRA2A, ADRA2B and ADRA2C), we recovered a clade that corresponds to the fourth member of the α2-adrenoreceptor gene family (ADRA2D). We also recovered a clade that possesses two ADRA2 sequences found in two lamprey species. Furthermore, our results show that mammals and crocodiles are characterized by possessing three α2-adrenoreceptor genes, whereas all other vertebrate groups possess the full repertoire of α2-adrenoreceptor genes. Among vertebrates ADRA2D seems to be a dispensable gene, as it was lost two independent times during the evolutionary history of the group. Additionally, we found that most examined species possess the most common alleles described for humans; however, there are cases in which non-human mammals possess the alternative variant. Finally, transcript abundance profiles revealed that during the early evolutionary history of gnathostomes, the expression of ADRA2D in different taxonomic groups became specialized to different tissues, but in the ancestor of sarcopterygians this specialization would have been lost.


Assuntos
Jacarés e Crocodilos/genética , Evolução Molecular , Mamíferos/genética , Receptores Adrenérgicos alfa 2/genética , Animais , Sequência Conservada/genética , Funções Verossimilhança , Mamíferos/sangue , Filogenia , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Transcrição Gênica
19.
BMC Evol Biol ; 17(1): 40, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166720

RESUMO

BACKGROUND: Whole-genome duplication (WGD) events have shaped the genomes of eukaryotic organisms. Relaxed selection after duplication along with inherent functional constraints are thought to determine the fate of the paralogs and, ultimately, the evolution of gene function. Here, we investigated the rate of protein evolution (as measured by dN/dS ratios) before and after the WGD in the hemiascomycete yeasts, and the way in which changes in such rates relate to molecular and biological function. RESULTS: For most groups of orthologous genes (81%) we observed a change in the rates of evolution after genome duplication. Genes with atypically-low dN/dS ratio before the WGD were prone to increase their rates of evolution after duplication. Importantly, the paralogs were often different in their rates of evolution after the WGD (50% cases), however, this was more consistent with an asymmetric deceleration in the protein-evolution rates, rather than an asymmetric increase of the initial rates. Functional-category analysis showed that regulatory proteins such as protein kinases and transcription factors were enriched in genes that increase their rates of evolution after the WGD. While changes in the rate of protein-sequence evolution were associated to protein abundance, content of disordered regions, and contribution to fitness, these features were an attribute of specific functional classes. CONCLUSIONS: Our results indicate that strong purifying selection in ancestral pre-duplication sequences is a strong predictor of increased rates after the duplication in yeasts and that asymmetry in evolution rate is established during the deceleration phase. In addition, changes in the rates at which paralogous sequences evolve before and after WGD are different for specific protein functions; increased rates of protein evolution after duplication occur preferentially in specific protein functions.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Genoma Fúngico , Leveduras/genética , Proteínas Fúngicas/química , Duplicação Gênica , Filogenia , Fatores de Tempo
20.
BMC Genomics ; 18(1): 46, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061859

RESUMO

BACKGROUND: All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. RESULTS: We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. CONCLUSIONS: Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.


Assuntos
Genes Duplicados , Genes de Plantas/genética , Plantas/genética , Evolução Molecular , Genômica , Plantas/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA