Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 17: 263-279, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39310269

RESUMO

Introduction: About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods: spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results: gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion: spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36674144

RESUMO

Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are relevant modulators of the intrauterine environment, increasing the risk of liver metabolic alterations in mothers and offspring. In contrast, as a non-pharmacological approach against metabolic disorders, exercise is highly recommended in GDM treatment. We analysed whether gestational exercise (GE) protects mothers from diet-induced GDM metabolic consequences and mitigates liver mitochondrial deleterious alterations in their 6-week-old male offspring. Female Sprague Dawley rats were fed with control or high-fat high-sucrose (HFHS) diet and kept sedentary or submitted to GE. Male offspring were sedentary and fed with control diet. Sedentary HFHS mothers and their offspring showed impaired hepatic mitochondrial biogenesis and morphological evidence of mitochondrial remodelling. In contrast, GE-related beneficial effects were demonstrated by upregulation of mitochondrial biogenesis signalling markers and mitochondrial fusion proteins and downregulation of mitochondrial fission protein. Alterations in miR-34a, miR-130b, and miR-494, associated with epigenetic regulation of mitochondrial biogenesis, suggested that GE is a more critical modulator of intergenerational changes in miRs expression than the maternal diet. Our data showed that GE positively modulated the altered hepatic mitochondrial biogenesis and dynamics markers and quality control signalling associated with maternal HFHS-diet-related GDM in mothers and offspring.


Assuntos
Diabetes Gestacional , MicroRNAs , Gravidez , Ratos , Humanos , Animais , Masculino , Feminino , Sacarose/efeitos adversos , Sacarose/metabolismo , Ratos Sprague-Dawley , Epigênese Genética , Diabetes Gestacional/induzido quimicamente , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166526, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995315

RESUMO

Gestational diabetes mellitus (GDM) is associated with a high-risk for metabolic complications in offspring. However, exercise is recognized as a non-pharmacological strategy against metabolic disorders and is recommended in GDM treatment. This study aimed to investigate whether gestational exercise (GE) could modulate maternal high-fat high-sucrose (HFHS) diet-related hepatic metabolic and mitochondrial outcomes in female offspring of mothers with HFHS-induced GDM. Female Sprague-Dawley rats were fed with control or HFHS diet and kept sedentary or submitted to GE. Their female offspring were fed with control diet and kept sedentary. Hepatic lipid accumulation, lipid metabolism regulators, mitochondrial biogenesis and dynamics markers, and microRNAs associated to the regulation of these markers were evaluated. Female offspring of GDM mothers showed increased body weight at early age, whereas GE prevented this effect of maternal HFHS-feeding and reduced hepatic lipid accumulation. GE stimulated hepatic mRNA transcription and protein expression of mitochondrial biogenesis markers (peroxisome proliferator-activated receptor-gamma co-activator-1alpha and mitochondrial transcription factor A) and mRNA transcription of mitochondrial dynamics markers (mitofusin-1, mitofusin-2, and dynamin-related protein-1) that were altered by maternal GDM, while mitochondrial dynamics markers protein expression was not affected by maternal diet/GE except for optic atrophy-1. MicroRNAs associated with these processes (miR-122, miR-34a, miR-130b, miR-494), and the expression of auto/mitophagy- and apoptosis-related proteins were not substantially influenced by altered intrauterine environment. Our findings suggest that GE is an important regulator of the intrauterine environment positively affecting liver metabolism and promoting liver mitochondrial biogenesis in female offspring despite eventual effects of maternal HFHS-feeding and related GDM.


Assuntos
Diabetes Gestacional , MicroRNAs , Animais , Diabetes Gestacional/metabolismo , Dieta Hiperlipídica , Feminino , Humanos , Lipídeos , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biogênese de Organelas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sacarose
4.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069390

RESUMO

Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ß-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1α-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade Materna/terapia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Efeitos Tardios da Exposição Pré-Natal , Adiposidade , Animais , Dieta Ocidental , Modelos Animais de Doenças , Feminino , Idade Gestacional , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Materna/enzimologia , Obesidade Materna/etiologia , Obesidade Materna/fisiopatologia , Gravidez , Corrida , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA