Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 42(6): 1037-1042, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29027413

RESUMO

In this paper, the granules intermediate prepared from the wet granulation process of ginkgo leaf tablet were taken as the research object, and then the stackability, homogeneity, flowability, compressibility and stability of granules were characterized by using micromeritics evaluation method. The physical fingerprint of granules were constructed by 16 indexes including bulk density, tapped density, span, width, relative homogeneity index, aspect ratio, Hausner ratio, angle of repose, granule flow time, inter-particle porosity, Carr index, specific surface area, pore volume, pore size distribution, loss on drying and hygroscopicity. Furthermore, compressibility parameters (i.e. index of parameter, index of parametric profile and index of good compression) were employed to analyze the compressibility characteristics of the granules. Two principal components (first principal component representing dimension parameter and second principal component representing morphology parameter), could be extracted from the physical fingerprint by the principal component analysis (PCA). The granules' physical fingerprint is of great importance to evaluate the batch-to-batch quality consistency of Ginkgo biloba granules and analyze the potential impacts of granules' quality attributes on product quality, which can provide guidance for the granules' quality control and process development..


Assuntos
Medicamentos de Ervas Chinesas/normas , Ginkgo biloba/química , Dessecação , Tamanho da Partícula , Pós , Controle de Qualidade , Comprimidos , Molhabilidade
2.
Zhongguo Zhong Yao Za Zhi ; 42(6): 1055-1061, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29027416

RESUMO

Raw materials' quality variation could affect the quality consistency of product and the clinical efficacy. In this paper, the high shear wet granulation (HSWG) process of the ginkgo leaf tablet was taken as the research object. Ginkgo biloba extracts and excipients microcrystalline cellulose collected from various sources and batches were used to simulate raw materials' quality variation. Real-time torque was recorded to analyze the viscosity of the wetting mass, and then by combining with physical fingerprint, the impact of physical quality variation of powders on granule properties could be investigated. Based on regime map thesis, whether the granules' nucleation mode was in mechanical dispersion regime was determined by calculating dimensionless parameters, which would lead to the unstable output in considerations of granule yield ratio and particle size distribution (PSD) curve. The orthogonal partial least square (OPLS) model was adopted to build the relationship between the micromeritic properties and the mediangranule size (D50) of Ginkgo biloba granules and then the critical material attributes (CMAs) were screened by variable importance in the projection (VIP) indexes. The results demonstrated that the properties of powders including hygroscopicity, angle of repose, Hausner ratio, Carr index, D10 and loss on drying affected the granule size. Besides, Ginkgo biloba granules were compressed into tablets. In view of tensile strength analysis, the raw materials' quality variation did not result in decrease of tensile strength of the ginkgo leaf tablets. The design space of critical quality attributes (CQAs) and the process design space which could cope with raw materials' quality variation were proved to be robust..


Assuntos
Medicamentos de Ervas Chinesas/normas , Ginkgo biloba/química , Celulose , Composição de Medicamentos , Excipientes , Tamanho da Partícula , Pós , Controle de Qualidade , Comprimidos , Tecnologia Farmacêutica
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-275423

RESUMO

In this paper, the granules intermediate prepared from the wet granulation process of ginkgo leaf tablet were taken as the research object, and then the stackability, homogeneity, flowability, compressibility and stability of granules were characterized by using micromeritics evaluation method. The physical fingerprint of granules were constructed by 16 indexes including bulk density, tapped density, span, width, relative homogeneity index, aspect ratio, Hausner ratio, angle of repose, granule flow time, inter-particle porosity, Carr index, specific surface area, pore volume, pore size distribution, loss on drying and hygroscopicity. Furthermore, compressibility parameters (i.e. index of parameter, index of parametric profile and index of good compression) were employed to analyze the compressibility characteristics of the granules. Two principal components (first principal component representing dimension parameter and second principal component representing morphology parameter), could be extracted from the physical fingerprint by the principal component analysis (PCA). The granules' physical fingerprint is of great importance to evaluate the batch-to-batch quality consistency of Ginkgo biloba granules and analyze the potential impacts of granules' quality attributes on product quality, which can provide guidance for the granules' quality control and process development..

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-275420

RESUMO

Raw materials' quality variation could affect the quality consistency of product and the clinical efficacy. In this paper, the high shear wet granulation (HSWG) process of the ginkgo leaf tablet was taken as the research object. Ginkgo biloba extracts and excipients microcrystalline cellulose collected from various sources and batches were used to simulate raw materials' quality variation. Real-time torque was recorded to analyze the viscosity of the wetting mass, and then by combining with physical fingerprint, the impact of physical quality variation of powders on granule properties could be investigated. Based on regime map thesis, whether the granules' nucleation mode was in mechanical dispersion regime was determined by calculating dimensionless parameters, which would lead to the unstable output in considerations of granule yield ratio and particle size distribution (PSD) curve. The orthogonal partial least square (OPLS) model was adopted to build the relationship between the micromeritic properties and the mediangranule size (D50) of Ginkgo biloba granules and then the critical material attributes (CMAs) were screened by variable importance in the projection (VIP) indexes. The results demonstrated that the properties of powders including hygroscopicity, angle of repose, Hausner ratio, Carr index, D10 and loss on drying affected the granule size. Besides, Ginkgo biloba granules were compressed into tablets. In view of tensile strength analysis, the raw materials' quality variation did not result in decrease of tensile strength of the ginkgo leaf tablets. The design space of critical quality attributes (CQAs) and the process design space which could cope with raw materials' quality variation were proved to be robust..

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...