Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.484
Filtrar
1.
Small Methods ; : e2400902, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092676

RESUMO

The systemic delivery of oligonucleotide therapeutics to the brain is challenging but highly desirable for the treatment of brain diseases undruggable with traditional small-molecule drugs. In this study, a set of DNA nanostructures is prepared and screened them to develop a protein corona-assisted platform for the brain delivery of oligonucleotide therapeutics. The biodistribution analysis of intravenously injected DNA nanostructures reveals that a cube-shaped DNA nanostructure (D-Cb) can penetrate the brain-blood barrier (BBB) and reach the brain tissue. The brain distribution level of D-Cb is comparable to that of other previous nanoparticles conjugated with brain-targeting ligands. Proteomic analysis of the protein corona formed on D-Cb suggests that its brain distribution is driven by endothelial receptor-targeting ligands in the protein corona, which mediate transcytosis for crossing the BBB. D-Cb is subsequently used to deliver an antisense oligonucleotide (ASO) to treat glioblastoma multiforme (GBM) in mice. While free ASO is unable to reach the brain, ASO loaded onto D-Cb is delivered efficiently to the brain tumor region, where it downregulates the target gene and exerts an anti-tumor effect on GBM. D-Cb is expected to serve as a viable platform based on protein corona formation for systemic brain delivery of oligonucleotide therapeutics.

2.
Curr Neurovasc Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39092730

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells. METHODS: Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 µM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects. RESULTS: Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others. CONCLUSION: Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin's benefits in treating glioma.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39093499

RESUMO

PURPOSE: Automated glioblastoma segmentation from magnetic resonance imaging is generally performed on a four-modality input, including T1, contrast T1, T2 and FLAIR. We hypothesize that information redundancy is present within these image combinations, which can possibly reduce a model's performance. Moreover, for clinical applications, the risk of encountering missing data rises as the number of required input modalities increases. Therefore, this study aimed to explore the relevance and influence of the different modalities used for MRI-based glioblastoma segmentation. METHODS: After the training of multiple segmentation models based on nnU-Net and SwinUNETR architectures, differing only in their amount and combinations of input modalities, each model was evaluated with regard to segmentation accuracy and epistemic uncertainty. RESULTS: Results show that T1CE-based segmentation (for enhanced tumor and tumor core) and T1CE-FLAIR-based segmentation (for whole tumor and overall segmentation) can reach segmentation accuracies comparable to the full-input version. Notably, the highest segmentation accuracy for nnU-Net was found for a three-input configuration of T1CE-FLAIR-T1, suggesting the confounding effect of redundant input modalities. The SwinUNETR architecture appears to suffer less from this, where said three-input and the full-input model yielded statistically equal results. CONCLUSION: The T1CE-FLAIR-based model can therefore be considered as a minimal-input alternative to the full-input configuration. Addition of modalities beyond this does not statistically improve and can even deteriorate accuracy, but does lower the segmentation uncertainty.

4.
J Neurooncol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093532

RESUMO

OBJECTIVES: Standard of care treatment for glioblastoma (GBM) involves surgical resection followed by chemoradiotherapy. However, variations in treatment decisions and outcomes exist across hospitals and physicians. In Belgium, where oncological care is dispersed, the impact of hospital volume on GBM outcomes remains unexplored. This nationwide study aims to analyse interhospital variability in 30-day postoperative mortality and 1-/2-year survival for GBM patients. METHODS: Data collected from the Belgian Cancer Registry, identified GBM patients diagnosed between 2016 and 2019. Surgical resection and biopsy cases were identified, and hospital case load was determined. Associations between hospital volume and mortality and survival probabilities were analysed, considering patient characteristics. Statistical analysis included logistic regression for mortality and Cox proportional hazard models for survival. RESULTS: A total of 2269 GBM patients were identified (1665 underwent resection, 662 underwent only biopsy). Thirty-day mortality rates post-resection/post-biopsy were 5.1%/11.9% (target < 3%/<5%). Rates were higher in elderly patients and those with worse WHO-performance scores. No significant difference was found based on hospital case load. Survival probabilities at 1/2 years were 48.6% and 21.3% post-resection; 22.4% and 8.3% post-biopsy. Hazard ratio for all-cause death for low vs. high volume centres was 1.618 in first 0.7 year post-resection (p < 0.0001) and 1.411 in first 0.8 year post-biopsy (p = 0.0046). CONCLUSION: While 30-day postoperative mortality rates were above predefined targets, no association between hospital volume and mortality was found. However, survival probabilities demonstrated benefits from treatment in higher volume centres, particularly in the initial months post-surgery. These variations highlight the need for continuous improvement in neuro-oncological practice and should stimulate reflection on the neuro-oncological care organisation in Belgium.

5.
Comput Biol Med ; 180: 108866, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089107

RESUMO

Drug resistance is one of the biggest challenges in the fight against cancer. In particular, in the case of glioblastoma, the most lethal brain tumour, resistance to temozolomide (the standard of care drug for chemotherapy in this tumour) is one of the main reasons behind treatment failure and hence responsible for the poor prognosis of patients diagnosed with this disease. In this work, we combine the power of three-dimensional in vitro experiments of treated glioblastoma spheroids with mathematical models of tumour evolution and adaptation. We use a novel approach based on internal variables for modelling the acquisition of resistance to temozolomide that was observed in experiments for a group of treated spheroids. These internal variables describe the cell's phenotypic state, which depends on the history of drug exposure and affects cell behaviour. We use model selection to determine the most parsimonious model and calibrate it to reproduce the experimental data, obtaining a high level of agreement between the in vitro and in silico outcomes. A sensitivity analysis is carried out to investigate the impact of each model parameter in the predictions. More importantly, we show how the model is useful for answering biological questions, such as what is the intrinsic adaptation mechanism, or for separating the sensitive and resistant populations. We conclude that the proposed in silico framework, in combination with experiments, can be useful to improve our understanding of the mechanisms behind drug resistance in glioblastoma and to eventually set some guidelines for the design of new treatment schemes.

6.
Expert Rev Neurother ; : 1-17, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090786

RESUMO

INTRODUCTION: High-grade glioma (HGG) is one of the most deadly and difficult cancers to treat. Despite intense research efforts, there has not been a significant breakthrough in treatment outcomes since the early 2000's. Anti-glioma gene therapy has demonstrated promise in preclinical studies and is under investigation in numerous clinical trials. AREAS COVERED: This manuscript reviews the current landscape of clinical trials exploring gene therapy treatment of HGG. Using information from clinicaltrials.gov, all trials initiated within the past 5 years (2018-2023) as well as other important trials were cataloged and reviewed. This review discusses trial details, innovative methodologies, and concurrent pharmacological interventions. The review also delves into the subtypes of gene therapy used, trends over time, and future directions. EXPERT OPINION: Trials are in the early stages (phase I or II), and there are reports of clinical efficacy in published results. Synergistic effects utilizing immunotherapy within or alongside gene therapy are emerging as a promising avenue for future breakthroughs. Considerable heterogeneity exists across trials concerning administration route, vector selection, drug combinations, and intervention timing. Earlier intervention in newly diagnosed HGG and avoidance of corticosteroids may improve efficacy in future trials. The results from ongoing trials demonstrate promising potential for molding the future landscape of HGG care.

7.
Mol Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090849

RESUMO

Glioblastoma (GB) is the most common and fatal type of primary malignant brain tumor for which effective therapeutics are still lacking. GB stem cells, with tumor-initiating and self-renewal capacity, are mostly responsible for GB malignancy, representing a crucial target for therapies. The TP73 gene, which is highly expressed in GB, gives rise to the TAp73 isoform, a pleiotropic protein that regulates neural stem cell biology; however, its role in cancer has been highly controversial. We inactivated TP73 in human GB stem cells and revealed that TAp73 is required for their stemness potential, acting as a regulator of the transcriptional stemness signatures, highlighting TAp73 as a possible therapeutic target. As proof of concept, we identified a novel natural compound with TAp73-inhibitory capacity, which was highly effective against GB stem cells. The treatment reduced GB stem cell-invasion capacity and stem features, at least in part by TAp73 repression. Our data are consistent with a novel paradigm in which hijacking of p73-regulated neurodevelopmental programs, including neural stemness, might sustain tumor progression, pointing out TAp73 as a therapeutic strategy for GB.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39091260

RESUMO

The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression. The presence of glioblastoma stem cells (GSCs) is a major factor behind the poor prognosis of glioblastoma multiforme (GBM). Stemness potential, heterogeneity, and self-renewal capacity, are some of the properties that make GSCs invade across the distant regions of the brain. Despite advances in medical technology and MRI-guided maximal surgical resection, not all GSCs residing in the brain can be removed, leading to recurrent disease. The aggressiveness of GBM is often correlated with immune suppression, where the T-cells are unable to infiltrate the cancer initiating GSCs. Standard of care therapies, including surgery and chemotherapy in combination with radiation therapy, have failed to tackle all the challenges of the GSCs, making it increasingly important for researchers to develop strategies to tackle their growth and proliferation and reduce the recurrence of GBM. Here, we will focus on the advancements in the field of nanomedicine that has the potential to show positive impact in managing glioblastoma tumor microenvironment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanomedicina , Células-Tronco Neoplásicas , Glioblastoma/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Animais , Recidiva Local de Neoplasia , Terapia de Imunossupressão , Invasividade Neoplásica , Camundongos
9.
Avicenna J Phytomed ; 14(3): 349-364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086858

RESUMO

Objective: The present work examined the anti-metastatic effects of auraptene and their underlying mechanisms of action in U87 Glioblastoma multiforme (GBM) cells. Materials and Methods: To test the hypothesis, cell culture, Matrigel invasion assay, scratch wound healing assay, gelatin zymography assay, qRT-PCR, and western blot experiments were conducted. Results: At sublethal concentrations of 12.5 and 25 µg/ml, auraptene exhibited a significant reduction in cell invasion and migration of U87 cells, as assessed using scratch wound healing and Transwell tests, respectively. The qRT-PCR and zymography experiments demonstrated a significant decrease in both mRNA expression and activities of MMP-2 and MMP-9 following auraptene treatment. Western blot analysis also showed that MMP-2 protein level and phosphorylation of metastasis-related proteins (p-JNK and p-mTOR) decreased in auraptene-treated cells. Molecular docking studies consistently demonstrated that auraptene exhibits a significant affinity towards MMP-2/-9, the ATP binding site of mTOR and JNK1/2/3. Conclusion: Auraptene inhibited the migration and invasion of GBM cells. This inhibitory effect was induced by modulating specific mechanisms, including suppressing MMPs, JNK, and mTOR activities.

10.
J Control Release ; 373: 699-712, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089504

RESUMO

Adapting the mechanical strength between the implant materials and the brain tissue is crucial for the postoperative treatment of glioblastoma. However, no related study has been reported. Herein, we report an injectable lipoic acid­iron (LA-Fe) hydrogel (LFH) that can adapt to the mechanical strength of various brain tissues, including human brain tissue, by coordinating Fe3+ into a hybrid hydrogel of LA and its sodium salt (LANa). When LFH, which matches the mechanical properties of mouse brain tissue (337 ± 8.06 Pa), was injected into the brain resection cavity, the water content of the brain tissue was maintained at a normal level (77%). Similarly, LFH did not induce the activation or hypertrophy of glial astrocytes, effectively preventing brain edema and scar hyperplasia. Notably, LFH spontaneously degrades in the interstitial fluid, releasing LA and Fe3+ into tumor cells. The redox couples LA/DHLA (dihydrolipoic acid, reduction form of LA in cells) and Fe3+/Fe2+ would regenerate each other to continuously provide ROS to induce ferroptosis and activate immunogenic cell death. As loaded the anti-PDL1, anti-PDL1@LFH further enhanced the efficacy of tumor-immunotherapy and promoted tumor ferroptosis. The injectable hydrogel that adapted the mechanical strength of tissues shed a new light for the tumor postoperative treatment.

11.
Ther Adv Med Oncol ; 16: 17588359241264727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091601

RESUMO

Background: Several studies have systematically assessed the efficacy and safety of progressive or recurrent glioblastoma multiforme (GBM). However, the discernible limitations of efficacy and the elevated costs of interventions instigate an investigation into the cost-effectiveness of these treatments. Objectives: This study aimed to evaluate cost-effectivenesses of 11 pharmacotherapeutic interventions for recurrent GBM from the perspective of healthcare payers in the United States (US) and China. Design: A model-based pharmacoeconomic evaluation. Methods: A partitioned survival model was employed to evaluate the cost-effectiveness of 11 distinct drug-based treatments. The clinical efficacy and safety data were obtained from a network meta-analysis, while the medical expenditure and health utility were primarily derived from published literature. One-way sensitivity analyses, scenario analyses, and probabilistic sensitivity analyses (PSA) were performed to scrutinize the impact of potential uncertainties to ensure the robustness of the model. The primary endpoint was the incremental cost-effectiveness ratio. Results: Among the therapeutic interventions evaluated, lomustine emerged as the cheapest option, with costs amounting to $78,998 in the United States and $30,231 in China, respectively. Regorafenib displayed the highest quality-adjusted life years at 0.475 in the United States and 0.465 in China. The one-way sensitivity analyses underscored that drug price was a key factor influencing cost-effectiveness. Both scenario and PSA consistently demonstrated that, considering the willingness-to-pay thresholds, lomustine was a cost-effective treatment with probability of more than 94%. Conclusion: In comparison to the alternative antitumor agents, lomustine was likely to be a cost-effective option for relapsed GBM patients from the perspective of healthcare payers in both the United States and China.

12.
Colloids Surf B Biointerfaces ; 243: 114128, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094210

RESUMO

Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.

13.
Crit Rev Oncol Hematol ; : 104459, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097247

RESUMO

Gliomas are one of the most aggressive types of brain tumors and are associated with high morbidity and mortality rates. Currently, conventional treatments for gliomas such as surgical resection, radiotherapy, and chemotherapy have limited effectiveness, and new approaches are needed to improve patient outcomes. mRNA-based vaccines represent a promising therapeutic strategy for cancer treatment, including gliomas. Recent advances in immunotherapy using mRNA-based dendritic cell vaccines have shown great potential in preclinical and clinical trials. Dendritic cells are professional antigen-presenting cells that play a crucial role in initiating and regulating immune responses. In this review, we summarize the current progress of mRNA-based vaccines for gliomas, with a focus on recent advances in dendritic cell-based mRNA vaccines. We also discuss the feasibility and safety of mRNA-based clinical applications for gliomas.

14.
Brain Pathol ; : e13294, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097525

RESUMO

Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.

15.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000148

RESUMO

The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.


Assuntos
Biomassa , Metabolismo Energético , Glioma , Mitocôndrias , Proteínas Mitocondriais , Fosforilação Oxidativa , Glioma/metabolismo , Glioma/patologia , Humanos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proliferação de Células , Glicólise , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Apoptose
16.
Asian J Neurosurg ; 19(2): 186-201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974428

RESUMO

Introduction Differentiation between glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastasis is important in decision-making before surgery. However, these malignant brain tumors have overlapping features. This study aimed to identify predictors differentiating between GBM, PCNSL, and metastasis. Materials and Methods Patients with a solitary intracranial enhancing tumor and a histopathological diagnosis of GBM, PCNSL, or metastasis were investigated. All patients with intracranial lymphoma had PCNSL without extracranial involvement. Demographic, clinical, and radiographic data were analyzed to determine their associations with the tumor types. Results The predictors associated with GBM were functional impairment ( p = 0.001), large tumor size ( p < 0.001), irregular tumor margin ( p < 0.001), heterogeneous contrast enhancement ( p < 0.001), central necrosis ( p < 0.001), intratumoral hemorrhage ( p = 0.018), abnormal flow void ( p < 0.001), and hypodensity component on noncontrast cranial computed tomography (CT) scan ( p < 0.001). The predictors associated with PCNSL comprised functional impairment ( p = 0.005), deep-seated tumor location ( p = 0.006), homogeneous contrast enhancement ( p < 0.001), absence of cystic appearance ( p = 0.008), presence of hypointensity component on precontrast cranial T1-weighted magnetic resonance imaging (MRI; p = 0.027), and presence of isodensity component on noncontrast cranial CT ( p < 0.008). Finally, the predictors for metastasis were an infratentorial ( p < 0.001) or extra-axial tumor location ( p = 0.035), smooth tumor margin ( p < 0.001), and presence of isointensity component on cranial fluid-attenuated inversion recovery MRI ( p = 0.047). Conclusion These predictors may be used to differentiate between GBM, PCNSL, and metastasis, and they are useful in clinical management.

17.
Cell Biochem Biophys ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048853

RESUMO

Electromagnetic fields create potential negative implications on biological systems, including modifications to DNA structure, nuclear condensation, cellular ion transport, and intracellular Ca2+ accumulation. To explore these effects on cancer cells, we exposed prostate, glioblastoma and cervix cancer cell lines to electromagnetic fields of wireless and assessed its anti-proliferative effects. PC3, A172, and HeLa cancer cells were cultured and exposed to electromagnetic fields for 24, 48, and 72 h. We used the MTT assay to detect cell viability and proliferation, Annexin V staining to determine apoptotic cells, and confocal microscopy to measure apoptosis-mediated intracellular calcium signals. Additionally, we performed profiling for apoptosis-related miRNAs. The results indicated that the electromagnetic field triggers apoptosis in the glioblastoma cell line A172 by increasing level of miR-129-5p, a known tumor suppressor. In contrast, the cervix cancer cell line and the prostate cancer cell line remained largely unaffected. In summary, our investigation underscores that electromagnetic fields at a 2.4 GHz frequency may adversely affect certain cancer cell lines, notably triggering apoptosis in the glioblastoma cancer cell line.

18.
Turk J Med Sci ; 54(3): 607-614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049995

RESUMO

Background/aim: Glioblastoma is one of the most aggressive tumours, resistant to all applied therapy regiments and prone to relapse. Median survival rates are therefore only expressed as months. STING agonists are immunomodulatory molecules that activate type I interferon expression, making them potentially useful in regulating the tumour microenvironment. Since PTEN serves as a critical phosphatase in activating interferon-regulating transcription factors and is frequently mutated in glioblastoma cells, this study aimed to investigate STING activation in glioblastoma cell lines, examining whether they harbour the PTEN protein or not.°. Materials and methods: T98G and U118MG glioblastoma cell lines were treated with the 2'3'-c-di-AM(PS)2(Rp,Rp) STING agonist together with or without the chemotherapeutic agent temozolomide. cGAS/STING pathway components were subsequently analysed using qRT-PCR, western blot, and ELISA methods. Results: Our results showed that PTEN-harbouring T98G cells responded well to STING activation, leading to increased temozolomide efficacy. In contrast, STING activation in U118MG cells did not affect the response to temozolomide. mRNA expression levels of STING, IRF3, NF-KB, and RELA genes were significantly increased at the combined treatment groups in T98G cell line. Conversely, combined treatment with STING agonist and temozolomide did not affect mRNA expression levels of cGAS/STING pathway genes in U118MG cells. Conclusion: Our data offers new evidence suggesting that STING agonists can effectively be used to increase temozolomide response in the presence of PTEN protein. Therefore, increased GBM therapy success rates can be achieved by employing the PTEN expression status as a predictive biomarker before treating patients with a chemotherapeutic agent in combination with STING agonist.


Assuntos
Glioblastoma , Proteínas de Membrana , PTEN Fosfo-Hidrolase , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Temozolomida/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fator Regulador 3 de Interferon/metabolismo
19.
Cell Rep Med ; : 101658, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053460

RESUMO

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39055532

RESUMO

Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...