Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1233352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564285

RESUMO

Introduction: Grazing prohibition is an effective management practice to restore salt marsh functioning. However, the effects of grazing exclusion on denitrifying microbial communities and their controlling factors in salt marshes remain unclear. Methods: In this study, we surveyed soil physicochemical properties and above- and below-ground biomass and using quantitative polymerase chain reaction and Illumina MiSeq high-throughput sequencing technology to determine the relative abundance, composition, and diversity of nitrite reductase nirS- and nirK-type denitrifying bacterial communities associated with grazing prohibition treatments and elevations. Results: The abundance of nirS-type denitrifiers increased with grazing prohibition time, whereas the abundance of nirK-type denitrifiers remained unaltered. Moreover, nirS-type denitrifiers were more abundant and diverse than nirK-type denitrifiers in all treatments. Grazing prohibition significantly altered the operational taxonomic unit richness, abundance-based coverage estimator, and Chao1 indices of the nirS-type denitrifying bacterial communities, whereas it only minimally affected the structure of the nirK-type denitrifying bacterial community. Discussion: The results imply that the nirS community, rather than nirK, should be the first candidate for use as an indicator in the process of salt marsh restoration after grazing prohibition. Substances of concern, total nitrogen, and salinity were the key environmental factors affecting the abundance and community composition of nirS and nirK denitrifiers. The findings of this study provide novel insights into the influence of the length of grazing prohibition and elevation on nirS- and nirK-type denitrifying bacterial community composition in salt marshes.

2.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4349-4358, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951276

RESUMO

Biological nitrogen (N) fixation and organic N degradation are the main sources of soil available N, while microorganisms driving such processes play an important role in soil N supply and the maintenance of soil fertility. In this study, real-time quantitative PCR and amplicon sequencing technology were used to examine the effects of restoration types on the community structure of N2-fixing and chitin-degrading bacteria harboring nifH and chiA genes, respectively, and the gene abundance under four meadows (undisturbed, grazing, fencing, and fencing + reseeding mea-dows) in Qinghai-Tibet Plateau. The results showed that the abundance of nifH and chiA in the four meadows followed the order of undisturbed meadow > grazed meadow > fencing meadow > fencing + reseeding meadow. The abundance of nifH and chiA in the undisturbed meadow was 3.4-6.3 times and 3.3-8.3 times of that in the other three meadows. The α diversity of N2-fixing bacteria in gra-zing, fencing, and fencing + reseeding meadows was significantly higher than that in the undisturbed meadow, while the α diversity of chitin-degrading bacteria was higher in the undisturbed and grazing meadows. Grazing significantly increased the relative abundance of Proteobacteria, but decreased the relative abundance of Cyanobacteria and Actinobacteria. The abundance of nifH and chiA was significantly affected by soil moisture, nutrients, and vegetation characteristics, while the community structure of nifH and chiA was affected by soil moisture, soil organic carbon content, and soil pH. Compared with undisturbed meadow, grazing reduced the potential of N fixation and organic N degradation.The improvement of 10 years grazing prohibition with fencing and reseeding measures on the function of N fixation and organic N degradation was not obvious. The characteristics of functional microbes and their influencing factors should be comprehensively considered during meadow restoration, which might take longer time or take reasonable management measures to restore grazing meadow to undisturbed level.


Assuntos
Pradaria , Solo , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , Tibet
3.
Sci Total Environ ; 777: 146104, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33677288

RESUMO

Grazing prohibition is an effective measure in improving soil stability and ecological quality. However, only a limited number of studies have been published on the dominant factors that impact soil aggregate stability and their associated effects on nutrient distribution for different size soil aggregates under long-term grazing prohibition management. In this study, we investigated variation in soil aggregate stability and nutrient distribution characteristics in semiarid grassland sites under different grazing prohibition timeframes (0 years [GP0], 11 years [GP11], 26 years [GP26], and 36 years [GP36]). Results showed that organic carbon (C) and total nitrogen (TN) concentrations in soil aggregates decreased at GP11 before progressively increasing and reaching its highest value at GP36, and the total phosphorus (TP) concentration did not change significantly. Most nutrients accumulated in macroaggregates (> 0.25 mm) under grazing prohibition, and the nutrient stoichiometry in soil aggregates increased after 26 years. Compared to the control (GP0), the mean weight diameter (MWD) value of the soil stability index increased at GP11 (21.7%) and decreased at GP26 (18.9%). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) also showed that the proportion of stable organic C-related functional groups (i.e., alkene-C and aromatic-C) in macroaggregates were higher at GP11 and GP36 than at GP26. Furthermore, principal component analysis (PCA), partial least squares path modeling (PLS-PM), and the relative importance of regressors all showed that glomalin-related soil proteins (GRSP) and nutrients indirectly improved aggregate stability in semiarid grassland through their influence on the GRSP accumulation potential and nutrient stoichiometry. Generally, after 26 years grazing prohibition had a positive effect on soil aggregate stability and nutrient accumulation in the semiarid grassland sites investigated for this study. Results from this study provide a theoretical basis to select appropriate grazing prohibition timeframes under grassland management initiatives to optimize ecological quality measures in semiarid regions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32033265

RESUMO

Desertification has inflicted severe damage on the natural environment and social economy for decades, particularly in the arid and semi-arid regions of northern China. In Yanchi County, a series of projects were implemented to combat desertification after 2000. To assess the effects of these Desertification Control Projects from the farmers' perspective, we divided Yanchi County into two regions (the northern and southern regions) according to their different environmental conditions. We collected data including basic family information, farmers' perceptions and attitudes, and farmers' suggestions, in a questionnaire investigation following the Participatory Rural Appraisal approach. Data analysis using the Mann-Whitney U test and Fisher's exact test revealed that the Desertification Control Projects were generally successful, as the local environment and farmers' incomes were both improved. Farmers were all satisfied with the effects of the projects, but the farmers in the southern region had a higher acceptance of the projects than those in the northern region. In addition, three problems with the Desertification Control Projects were noted: the farmers had a low degree of participation in the projects, the farmer's low incomes affected the sustainability of the projects, and the implementation of the complete grazing ban had several adverse effects. We provided suggestions for solving these problems. Our findings have important implications for assessing the effects of environmental conservation projects, especially from a participant's perspective.


Assuntos
Atitude , Conservação dos Recursos Naturais , Fazendeiros/psicologia , Agricultura , China , Clima Desértico , Humanos , Estudos de Casos Organizacionais , População Rural , Inquéritos e Questionários
5.
Sci Total Environ ; 673: 92-101, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986685

RESUMO

Grazing prohibition has been used to restore degraded grassland ecosystems in semiarid areas; however, the impact of this measure on soil nitrogen (N) cycling is poorly understood. Furthermore, recent studies have tended to focus on the topsoil and ignored a steep gradient of nutrient accumulation with soil depth. Here, we investigated changes in N functional genes (NFGs) involved in organic N decomposition (chiA), archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB), respectively, denitrification (nirK and nirS), and N fixation (nifH) in soil profiles from a chronosequence of grazing prohibition (0, 10, 15, 25, and 35 years) in the semiarid grasslands of the Loess Plateau, China. The abundance of all the investigated NFGs in grassland soils after 35 years' grazing prohibition was higher than in grazed grassland. This result suggests that microbial N turnover potential is facilitated by grazing prohibition, probably through enhanced biomass production via increases in nutrient input into the soil. The higher ratio of (chiA + nifH)/(amoA-AOA + amoA-AOB) and values of (nirK + nirS) in grazing-prohibited grasslands than in grazed grassland suggest that prohibition of grazing not only improved microbial N storage potential but also increased N gas emission potential. The abundances of NFGs varied along the soil profiles and responded differently to environmental factors. The chiA and nifH abundances decreased with soil depth and were associated with variation in aboveground biomass, NH4+-N, and organic carbon, while amoA-AOA, nirK, and nirS genes increased with depth and were more affected by soil organic carbon, moisture, and bulk density. Multivariate regression tree analysis demonstrated that aboveground biomass was the best explanatory variable for the changes in NFGs in grazed grassland, while soil organic carbon was the best in the grazing-prohibited grasslands. Our results provide new insight into the soil N cycling potential of degraded and restored semiarid grassland ecosystems.


Assuntos
Genes Microbianos , Pradaria , Nitrogênio/metabolismo , Microbiologia do Solo , China , Conservação dos Recursos Naturais , Desnitrificação , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA