Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chemistry ; : e202403341, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363700

RESUMO

Fluorination is an efficient strategy for improving organic solar cells (OSCs) efficiency, particularly by fluorinating the end group of emerging nonfullerene acceptors. Here, the fluorination effect was investigated by using small molecule donors with fluorine-free (SBz) and fluorinated (SBz-F) end groups, paired with the emerging nonfullerene acceptor Y6. Interestingly and unexpectedly, fluorination of the end group negatively affects OSCs efficiency, with fluorine-free SBz:Y6 OSCs achieving a higher power conversion efficiency (PCE) of 11.05% compared to the fluorine-containing SBz-F:Y6 blends (PCE = 9.61%). Analysis of space-charge limited currents reveals lower and unbalanced hole/electron mobility in SBz-F:Y6 compared to the SBz:Y6 blends. These findings are further supported by charge recombination dynamics and donor-acceptor miscibility analyses.

2.
Chemistry ; : e202403045, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345024

RESUMO

Discovered in 1822, the haloform reaction is one of the oldest synthetic organic reactions. The haloform reaction enables the synthesis of carboxylic acids, esters or amides from methyl ketones. The reaction proceeds via exhaustive a-halogenation and then substitution by a nucleophile to liberate a haloform. The methyl group therefore behaves as a masked leaving group. The reaction methodology has undergone several important developments in the last 200 years, transitioning from a diagnostic test of methyl ketones to a synthetically useful tool for accessing complex esters and amides. The success of the general approach has been exhibited through the use of the reaction in the synthesis of many different complex molecules in fields ranging from natural product synthesis, pharmaceuticals, agrochemicals, fragrants and flavouring. The reaction has not been extensively reviewed since 1934. Therefore, herein we provide details of the history and mechanism of the haloform reaction, as well as an overview of the developments in the methodology and a survey of examples, particularly in natural product synthesis, in which the haloform reaction has been used.

3.
Chem Asian J ; : e202400866, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288314

RESUMO

N,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and Me3SiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange. The 4-ICH2-functionalized products were found to be unstable, whereas a series of novel 4-bromomethyl functionalized N,N'-diarylimidazolium salts were obtained in good yields. These bromomethyl-functionalized imidazolium salts were found to be significantly more reactive towards various N, O and S nucleophiles than the chloromethyl counterparts and enabled the preparation of previously inaccessible heteroatom-functionalized imidazolium salts, some of which were successfully used as NHC proligands in the preparation of Pd/NHC and Au/NHC complexes.

4.
FEBS J ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39308083

RESUMO

Organohalogen compounds exhibit wide-ranging bioactivities and potential applications. Understanding natural biosynthetic pathways and improving the production of halogenated compounds has garnered significant attention. Recently, the biosynthetic pathway of a cyanobacterial neurotoxin, aetokthonotoxin, was reported. It contains two unique enzymes: a single-component flavin-dependent halogenase AetF and a new type of nitril synthase AetD. The crystal structures of these enzymes in complex with their cofactors and substrates that were recently reported will be presented here. The AetF structures reveal a tri-domain architecture, the transfer direction of the hydride ion, a possible path to deliver the hypohalous acid, and the unusual bispecific substrate-recognition mode. The AetD structures demonstrate that the nitrile formation should occur through the action of a diiron cluster, implying that the enzyme should be capable of catalyzing the nitrile formation of alternative amino acids. This information is of central importance for understanding the mechanism of action as well as the applications of these two the-first-of-its-kind enzymes.

5.
Emerg Infect Dis ; 30(10): 2174-2177, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320337

RESUMO

We performed chlorine inactivation experiments for Elizabethkingia anophelis and E. meningoseptica bacterial strains from clinical and environmental sources. Free chlorine concentration × contact time values <0.04 mg·min/L achieved 99.9% inactivation of Elizabethkingia species, indicating chlorine susceptibility. Measures to control biofilm producing pathogens in plumbing are needed to prevent Elizabethkingia bacterial infections.


Assuntos
Cloro , Desinfetantes , Flavobacteriaceae , Microbiologia da Água , Cloro/farmacologia , Flavobacteriaceae/efeitos dos fármacos , Desinfetantes/farmacologia , Humanos , Infecções por Flavobacteriaceae/microbiologia , Biofilmes/efeitos dos fármacos
6.
J Phys Condens Matter ; 36(50)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39312944

RESUMO

The striking electronic characteristics of graphene trigger immense interests and continual explora-tions for new two-dimensional (2D) Dirac materials. By first-principles electronic structure calculations, we here identify a new set of 2D semimetals in hydro-/halogen embedding trigonalδ6borophene, namelyδ6-B3X (X = H, F, Cl), that possess the graphene-like massless Dirac fermions. Owing to the central hollow B atoms strongly hybridized to the hydro-/halogen adatoms, adequate charge transfer is induced from the hollow B to the basal honeycomb B sublattice, which electronically stabilizes the 2D sheet and decisively endows a robust (intrinsic and stable-against-strains) graphene-like Dirac cone state. The predicted high energetic, dynamic and thermal stabilities, combined with pretty geometrical match to the commonly utilized Ag/Au(111) substrates, support their experimental viabilities. Our prediction provides a new branch for exploring the intriguing 2D Dirac fermionic states in versatile boron element and its derivatives.

7.
Chem Asian J ; : e202401050, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323072

RESUMO

An eco-friendly electrochemical halogenation of 2-amino-1,4-naphthoquinones has been developed. The new mild and energy efficient methodology comprises sustainable features like oxidant free and double role of the halogen source as electrolyte, originating twenty-six amino-halogenated naphthoquinoidal derivatives in good yields under mild conditions. This novel methodology permitted access to new potent trypanocidal prototypes, where six compounds were more active than benznidazole, the current market drug used in the treatment of Chagas Disease.

8.
ACS Appl Mater Interfaces ; 16(34): 45265-45274, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39151106

RESUMO

Researchers have been motivated to develop photovoltaic systems that can efficiently convert artificial light into power with the growing use of indoor electrical devices for the Internet of Things. Understanding the impact of molecular design strategies involving morphological optimization through the terminal group of the non-fullerene acceptors (NFAs) is crucial. This is critically important to enhancing the photovoltaic efficiency of organic photovoltaic devices under diverse irradiation conditions. Halogenation of terminal groups proves to be a standout approach for adjusting energy levels, refining light-harvesting capabilities, crystallinity, and bolstering the intermolecular stacking in NFAs. Herein, we have designed two simple NFAs, DICTF-4F and DICTF-4Cl, to explore the dihalogenation (F and Cl) effect on the terminal group on the optical and electrochemical properties. After combining with the BODIPY-thiophene-backboned donor polymer P(BdP-HT), the organic solar cells (OSCs) using an optimized active layer with P(BdP-HT):DICTF-4F and P(BdP-HT):DICTF-4Cl attained a power conversion efficiency (PCE) of about 8.03 and 14.16%, respectively, under 1 sun illumination. Moreover, the OSC-based P(BdP-HT):DICTF-4Cl active layer showed a PCE approaching 24% under 1000 lx indoor conditions.

9.
Beilstein J Org Chem ; 20: 1794-1799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109297

RESUMO

Enantioselective halolactonizations of sterically less hindered alkenoic acid substrates without substituents on the carbon-carbon double bond have remained a formidable challenge. To address this limitation, we report herein the asymmetric bromolactonization of 5-hexenoic acid derivatives catalyzed by a BINOL-derived chiral bifunctional sulfide.

10.
Angew Chem Int Ed Engl ; : e202411387, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183368

RESUMO

Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.

11.
Adv Sci (Weinh) ; 11(33): e2404071, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38958542

RESUMO

α-halo alkylboronic esters, acting as ambiphilic synthons, play a pivotal role as versatile intermediates in fields like pharmaceutical science and organic chemistry. The sequential transformation of carbon-boron and carbon-halogen bonds into a broad range of carbon-X bonds allows for programmable bond formation, facilitating the incorporation of multiple substituents at a single position and streamlining the synthesis of complex molecules. Nevertheless, the synthetic potential of these compounds is constrained by limited reaction patterns. Additionally, the conventional methods often necessitate the use of bulk toxic solvents, exhibit sensitivity to air/moisture, rely on expensive metal catalysts, and involve extended reaction times. In this report, a ball milling technique is introduced that overcomes these limitations, enabling the external catalyst-free multicomponent coupling of aryl diazonium salts, alkenes, and simple metal halides. This approach offers a general and straightforward method for obtaining a diverse array of α-halo alkylboronic esters, thereby paving the way for the extensive utilization of these synthons in the synthesis of fine chemicals.

12.
Chemistry ; 30(52): e202402261, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39039960

RESUMO

The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.

13.
Angew Chem Int Ed Engl ; 63(39): e202408750, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38937258

RESUMO

We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based methods for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.

14.
Adv Sci (Weinh) ; 11(31): e2403334, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884140

RESUMO

Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.

15.
J Inorg Biochem ; 259: 112643, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38924872

RESUMO

Halogenation of aliphatic C-H bonds is a chemical transformation performed in nature by mononuclear nonheme iron dependent halogenases. The mechanism involves the formation of an iron(IV)-oxo-chloride species that abstracts the hydrogen atom from the reactive C-H bond to form a carbon-centered radical that selectively reacts with the bound chloride ligand, a process commonly referred to as halide rebound. The factors that determine the halide rebound, as opposed to the reaction with the incipient hydroxide ligand, are not clearly understood and examples of well-defined iron(IV)-oxo-halide compounds competent in C-H halogenation are scarce. In this work we have studied the reactivity of three well-defined iron(IV)-oxo complexes containing variants of the tetradentate 1-(2-pyridylmethyl)-1,4,7-triazacyclononane ligand (Pytacn). Interestingly, these compounds exhibit a change in their chemoselectivity towards the functionalization of C-H bonds under certain conditions: their reaction towards C-H bonds in the presence of a halide anionleads to exclusive oxygenation, while the addition of a superacid results in halogenation. Almost quantitative halogenation of ethylbenzene is observed when using the two systems with more sterically congested ligands and even the chlorination of strong C-H bonds such as those of cyclohexane is performed when a methyl group is present in the sixth position of the pyridine ring of the ligand. Mechanistic studies suggest that both reactions, oxygenation and halogenation, proceed through a common rate determining hydrogen atom transfer step and the presence of the acid dictates the fate of the resulting alkyl radical towards preferential halogenation over oxygenation.


Assuntos
Halogenação , Ferro , Prótons , Ferro/química , Complexos de Coordenação/química , Ligantes , Carbono/química , Oxigênio/química
16.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930959

RESUMO

We report the synthesis of two novel halogenated nitro-arylhimachalene derivatives: 2-bromo-3,5,5,9-tetramethyl-1-nitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (bromo-nitro-arylhimachalene) and 2-chloro-3,5,5,9-tetramethyl-1,4-dinitro-6,7,8,9-tetrahydro-5H-benzo[7]annulene (chloro-dinitro-arylhimachalene). These compounds were derived from arylhimachalene, an important sesquiterpene component of Atlas cedar essential oil, via a two-step halogenation and nitration process. Characterization was performed using 1H and 13C NMR spectrometry, complemented by X-ray structural analysis. Quantum chemical calculations employing density functional theory (DFT) with the Becke3-Lee-Yang-parr (B3LYP) functional and a 6-31++G(d,p) basis set were conducted. The optimized geometries of the synthesized compounds were consistent with X-ray structure data. Frontier molecular orbitals and molecular electrostatic potential (MEP) profiles were identified and discussed. DFT reactivity indices provided insights into the compounds' behaviors. Moreover, Hirshfeld surface and 2D fingerprint analyses revealed significant intermolecular interactions within the crystal structures, predominantly H-H and H-O contacts. Molecular docking studies demonstrate strong binding affinities of the synthesized compounds to the active site of protein 7B2W, suggesting potential therapeutic applications against various isolated smooth muscles and neurotransmitters.

17.
Angew Chem Int Ed Engl ; 63(34): e202407355, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837587

RESUMO

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.

19.
Chemistry ; 30(43): e202401650, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785097

RESUMO

The ability of triaryltelluronium salts to interact with N-halosuccinimides (NXS) through chalcogen bonding (ChB) in the solid state and in solution is demonstrated herein. Cocrystals of the triaryltelluronium bearing two CF3 electron-withdrawing groups per aryl ring with N-chloro-, N-bromo- and N-iodosuccinimide (respectively NCS, NBS and NIS) were analyzed by X-ray diffraction, evidencing a ChB between tellurium and the carbonyl group of NXS. This ChB was confirmed in solution by NMR spectroscopy, especially by 125Te NMR titration experiment, which allowed the determination of the association constant (Ka) between the telluronium and NBS. The so-obtained Ka value of 17.3±0.6 M-1 indicated a moderate interaction in solution because of the competitive role of the solvent. The strength of the Te⋅⋅⋅O ChB was however sufficient enough to promote the catalytic halofunctionalization of aromatics and of alkenes such as the intra- and intermolecular haloalkoxylation and haloesterification of alkenes.

20.
Chem Asian J ; 19(15): e202400159, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38794837

RESUMO

In this study, compounds with phenylethynyl (PE) groups introduced at all of the possible positions of the methylene-bridged structure of the 1,1'-bi-2-naphthol backbone (3-PE to 8-PE) were synthesized. Compounds with four or six phenylethynyl groups (3,6-PE, 4,6-PE, 5,6-PE, 6,7-PE, and 3,4,6-PE) were also synthesized. The key reaction for the synthesis of these compounds was the Sonogashira reaction using halogen scaffolds. The new transformation methods include (1) selective bromination of the 5-position of the binaphthyl skeleton and (2) bromination of the 6-position and then iodination of the 4-position, followed by the Sonogashira reaction of iodine at the 4-position and lithiation and protonation of bromine at the 6-position. The optical properties of the compounds were evaluated. The extension of the π system greatly differed depending on the position of the phenylethynyl group. 4-PE, 4,6-PE, and 3,4,6-PE, in which the phenylethynyl groups were introduced in the extended direction of the naphthalene linkage axis, showed longer absorption and emission wavelengths and higher fluorescence quantum yields than the other compounds. In circularly polarized luminescence measurements, 7-PE showed a relatively large glum value, an interesting finding that reverses the sense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA