Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 544: 39-49, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423164

RESUMO

Alcohol hangover is the combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration approaches zero. We previously demonstrated that hangover provokes mitochondrial dysfunction, oxidative stress, imbalance in antioxidant defenses, and impairment in cellular bioenergetics. Chronic and acute ethanol intake induces neuroapoptosis but there are no studies which evaluated apoptosis at alcohol hangover. The aim of the present work was to study alcohol residual effects on intrinsic and extrinsic apoptotic signaling pathways in mice brain cortex. Male Swiss mice received i.p. injection of ethanol (3.8 g/kg) or saline. Six hours after injection, at alcohol hangover onset, mitochondria and tissue lysates were obtained from brain cortex. Results indicated that during alcohol hangover a loss of granularity of mitochondria and a strong increment in mitochondrial permeability were observed, indicating the occurrence of swelling. Alcohol-treated mice showed a significant 35% increase in Bax/Bcl-2 ratio and a 5-fold increase in the ratio level of cytochrome c between mitochondria and cytosol. Caspase 3, 8 and 9 protein expressions were 32%, 33% and 20% respectively enhanced and the activity of caspase 3 and 6 was 30% and 20% increased also due to the hangover condition. Moreover, 38% and 32% increments were found in PARP1 and p53 protein expression respectively and on the contrary, SIRT-1 was almost 50% lower than controls due to the hangover condition. The present work demonstrates that alcohol after-effects could result in the activation of mitochondrial and non-mitochondrial apoptosis pathways.


Assuntos
Intoxicação Alcoólica , Etanol , Masculino , Animais , Camundongos , Etanol/toxicidade , Caspase 3/metabolismo , Concentração Alcoólica no Sangue , Intoxicação Alcoólica/metabolismo , Encéfalo/metabolismo , Apoptose , Transdução de Sinais
2.
J Clin Med ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36836026

RESUMO

In Argentina, the 2019 coronavirus disease (COVID-19) pandemic led to serious changes to social interaction, health, economy, and education. Argentina experienced two extensive lockdown periods. University education remained virtual for almost two academic years. The purpose of the present work was to analyze the impact of the COVID-19 lockdowns in Argentina on alcohol consumption, hangover severity and smoking among university students in Buenos Aires. A retrospective online survey was conducted in 2021 among students of the University of Buenos Aires. Participants aged 18-35 years old were asked about the average number of alcoholic drinks and number of drinking days per week, binge drinking occasions, drunkenness, next day hangover severity, number of hangovers per month, and smoking behavior. The results showed that the first and second COVID-19 lockdowns were associated with significant reductions in both weekly alcohol consumption, and hangover severity and subjective intoxication on their heaviest drinking occasions. Males consumed significantly more alcohol than females, and older students (25-35 years old) consumed more alcohol than younger students (18-24 years old). In addition, younger students reduced the number of cigarettes smoked per day during the two lockdown periods while older students exhibited significantly more smoking days per week. In conclusion, the present work in Argentinian students revealed a significant reduction in weekly alcohol consumption, and subjective intoxication and hangover severity on their heaviest drinking occasions during the pandemic lockdown periods.

3.
Nitric Oxide ; 113-114: 39-49, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962017

RESUMO

Alcohol hangover is defined as the combination of mental and physical symptoms experienced the day after a single episode of heavy drinking, starting when blood alcohol concentration approaches zero. We previously evidenced increments in free radical generation and an imbalance in antioxidant defences in non-synaptic mitochondria and synaptosomes during hangover. It is widely known that acute alcohol exposure induces changes in nitric oxide (NO) production and blocks the binding of glutamate to NMDAR in central nervous system. Our aim was to evaluate the residual effect of acute ethanol exposure (hangover) on NO metabolism and the role of NMDA receptor-PSD95-nNOS pathway in non-synaptic mitochondria and synaptosomes from mouse brain cortex. Results obtained for the synaptosomes fraction showed a 37% decrease in NO total content, a 36% decrease in NOS activity and a 19% decrease in nNOS protein expression. The in vitro addition of glutamate to synaptosomes produced a concentration-dependent enhancement of NO production which was significantly lower in samples from hangover mice than in controls for all the glutamate concentrations tested. A similar patter of response was observed for nNOS activity being decreased both in basal conditions and after glutamate addition. In addition, synaptosomes exhibited a 64% and 15% reduction in NMDA receptor subunit GluN2B and PSD-95 protein expression, respectively. Together with this, glutamate-induced calcium entry was significant decreased in synaptosomes from alcohol-treated mice. On the other hand, in non-synaptic mitochondria, no significant differences were observed in NO content, NOS activity or nNOS protein expression. The expression of iNOS remained unaltered in synaptosomes and non-synaptic mitochondria. Here we demonstrated that hangover effects on NO metabolism are strongly evidenced in synaptosomes probably due to a disruption in NMDAR/PSD-95/nNOS pathway.


Assuntos
Intoxicação Alcoólica/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/genética , Masculino , Camundongos , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo I/genética
4.
Alcohol ; 77: 113-123, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30385200

RESUMO

Alcohol hangover (AH) has been associated with oxidative stress and mitochondrial dysfunction. We herein postulate that AH-induced mitochondrial alterations can be due to a different pattern of response in synaptosomes and non-synaptic (NS) mitochondria. Mice received intraperitoneal (i.p.) injections of ethanol (3.8 g/kg) or saline and were sacrificed 6 h afterward. Brain cortex NS mitochondria and synaptosomes were isolated by Ficoll gradient. Oxygen consumption rates were measured in NS mitochondria and synaptosomes by high-resolution respirometry. Results showed that NS-synaptic mitochondria from AH animals presented a 26% decrease in malate-glutamate state 3 respiration, a 64% reduction in ATP content, 28-37% decrements in ATP production rates (malate-glutamate or succinate-dependent, respectively), and 44% inhibition in complex IV activity. No changes were observed in mitochondrial transmembrane potential (ΔΨ) or in UCP-2 expression in NS-mitochondria. Synaptosome respiration driving proton leak (in the presence of oligomycin), and spare respiratory capacity (percentage ratio between maximum and basal respiration) were 30% and 15% increased in hangover condition, respectively. Synaptosomal ATP content was 26% decreased, and ATP production rates were 40-55% decreased (malate-glutamate or succinate-dependent, respectively) in AH mice. In addition, a 24% decrease in ΔΨ and a 21% increase in UCP-2 protein expression were observed in synaptosomes from AH mice. Moreover, mitochondrial respiratory complexes I-III, II-III, and IV activities measured in synaptosomes from AH mice were decreased by 18%, 34%, and 50%, respectively. Results of this study reveal that alterations in bioenergetics status during AH could be mainly due to changes in mitochondrial function at the level of synapses.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Córtex Cerebral/metabolismo , Metabolismo Energético/fisiologia , Etanol/toxicidade , Mitocôndrias/metabolismo , Sinaptossomos/metabolismo , Intoxicação Alcoólica/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
5.
Neurosci Lett ; 670: 1-7, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29355695

RESUMO

In last few years it has been a significant increase in the consumption of alcohol combined with energy drink. The aim of this work was to study the effect of this mixture in motor and affective behaviors during an alcohol hangover episode. Male Swiss mice received one of the following treatments: saline + sucrose; saline + energy drink; ethanol + sucrose; ethanol + energy drink. Ethanol dose was 3.8 g/kg BW (i.p.) and energy drink dose was 18 ml/kg BW (gavage) at ZT1 (8 am) (ZT: Zeitgeber time; ZT0: 7 am; lights on). The behavioral tests used were tight rope test to determine motor coordination; hanging wire test to study muscular strength; elevated plus maze and open field tests to evaluate anxiety like-behavior and locomotor activity. Tests were carried out at basal point that matched with lights onset and every 6 h up to 18 h after treatments. Hangover onset was established at ZT7 when blood alcohol concentration (BAC) was almost zero. Our results showed that the mixture of alcohol and energy drink altered significantly motor skills. Specifically, a significant decrease was observed in the performance of the animals in the tightrope and hanging wire tests in groups treated with the mixture of alcohol and energy drink. A significant impairment in the anxiety-like behavior was observed mainly at the beginning of alcohol hangover. These findings suggest that energy drink added to alcohol extends motor disabilities observed during an alcohol hangover episode in comparison with animals that received alcohol alone.


Assuntos
Intoxicação Alcoólica , Comportamento Animal/efeitos dos fármacos , Bebidas Energéticas , Etanol/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Concentração Alcoólica no Sangue , Masculino , Camundongos , Modelos Animais
6.
Neurochem Res ; 43(2): 458-464, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29196951

RESUMO

Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the increase in alcohol metabolites and imbalance in oxidative status. N-acetylcysteine (NAC) is a mucolytic agent and an antidote for paracetamol overdose. Preclinical and clinical studies have shown that NAC is a multi-target drug acting through neuroprotective, antioxidant and neurotrophic mechanisms as well as a glutamate modulator. The aim of this study was to investigate the effects of NAC in zebrafish acutely exposed to ethanol (EtOH). Animals pretreated or not with NAC (1 mg/L, 10 min) were exposed for 60 min to standard tank water (EtOH-) or to 1% EtOH (EtOH+) to evaluate anxiety-like behavior and locomotion in the novel tank test and oxidative damage in the brain. Zebrafish (Danio rerio) exposed to EtOH displayed a decrease in the distance traveled, crossings, entries and time spent in the top area in the novel tank test. Exposure to EtOH also caused oxidative damage, shown by increased lipid peroxidation, decreased non-protein thiols and increased production of reactive oxygen species (DCF assay). NAC prevented both the behavioral alterations and the oxidative stress observed in EtOH+ animals. Given the effects of NAC in preventing the acute behavioral and biochemical effects of EtOH, additional studies are warranted to further investigate the basis of its anecdotal use to prevent hangover.


Assuntos
Acetilcisteína/farmacologia , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Masculino , Peixe-Zebra
7.
Free Radic Biol Med ; 108: 692-703, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450149

RESUMO

Alcohol hangover (AH) is the pathophysiological state after a binge-like drinking. We have previously demonstrated that AH induced bioenergetics impairments in a total fresh mitochondrial fraction in brain cortex and cerebellum. The aim of this work was to determine free radical production and antioxidant systems in non-synaptic mitochondria and synaptosomes in control and hangover animals. Superoxide production was not modified in non-synaptic mitochondria while a 17.5% increase was observed in synaptosomes. A similar response was observed for cardiolipin content as no changes were evidenced in non-synaptic mitochondria while a 55% decrease in cardiolipin content was found in synaptosomes. Hydrogen peroxide production was 3-fold increased in non-synaptic mitochondria and 4-fold increased in synaptosomes. In the presence of deprenyl, synaptosomal H2O2 production was 67% decreased in the AH condition. Hydrogen peroxide generation was not affected by deprenyl addition in non-synaptic mitochondria from AH mice. MAO activity was 57% increased in non-synaptic mitochondria and 3-fold increased in synaptosomes. Catalase activity was 40% and 50% decreased in non-synaptic mitochondria and synaptosomes, respectively. Superoxide dismutase was 60% decreased in non-synaptic mitochondria and 80% increased in synaptosomal fractions. On the other hand, GSH (glutathione) content was 43% and 17% decreased in synaptosomes and cytosol. GSH-related enzymes were mostly affected in synaptosomes fractions by AH condition. Acetylcholinesterase activity in synaptosomes was 11% increased due to AH. The present work reveals that AH provokes an imbalance in the cellular redox homeostasis mainly affecting mitochondria present in synaptic terminals.


Assuntos
Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Córtex Cerebral/patologia , Radicais Livres/metabolismo , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Acetilcolinesterase/metabolismo , Animais , Cardiolipinas/metabolismo , Metabolismo Energético , Etanol/toxicidade , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Oxirredução , Terminações Pré-Sinápticas/patologia , Superóxidos/metabolismo , Sinaptossomos/metabolismo
8.
Neuroscience ; 304: 47-59, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26192095

RESUMO

Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. Male mice received a single i.p. injection of EtOH (3.8g/kg BW) or saline solution. Mitochondrial function was evaluated 6h after injection (AH onset). At the onset of AH, malate-glutamate and succinate-supported state 4 oxygen uptake was 2.3 and 1.9-fold increased leading to a reduction in respiratory control of 55% and 48% respectively, as compared with controls. Decreases of 38% and 16% were found in Complex I-III and IV activities. Complex II-III activity was not affected by AH. Mitochondrial membrane potential and mitochondrial permeability changes were evaluated by flow cytometry. Mitochondrial membrane potential and permeability were decreased by AH in cerebellum mitochondria. Together with this, AH induced a 25% increase in superoxide anion and a 92% increase in hydrogen peroxide production in cerebellum mitochondria. Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Cerebelo/metabolismo , Radicais Livres/metabolismo , Mitocôndrias/metabolismo , Animais , Antioxidantes/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Cerebelo/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/administração & dosagem , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
9.
Neuroscience ; 269: 281-9, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24713372

RESUMO

Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.


Assuntos
Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Antioxidantes/farmacologia , Córtex Cerebral/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Transtornos Relacionados ao Uso de Álcool/fisiopatologia , Animais , Depressores do Sistema Nervoso Central/efeitos adversos , Córtex Cerebral/fisiopatologia , Etanol/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/fisiologia , Atividade Motora/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxigênio/metabolismo
10.
Behav Brain Res ; 253: 128-38, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850352

RESUMO

Alcohol hangover is a temporary state described as the unpleasant next-day effects after binge-like drinking. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. Affective behavior is impaired during the acute phase of alcohol intoxication; however, no reports indicate if similar effects are observed during withdrawal. The aim of this work was to study the time-extension and possible fluctuations in affective behavior during a hangover episode. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8g/kg BW) (hangover group). Anxiety, fear-related behavior and despair phenotype were evaluated at a basal point (ZT0) and every 2h up to 20h after blood alcohol levels were close to zero (hangover onset). Also, anhedonia signs and pain perception disabilities were studied. Mice exhibited an increase in anxiety-like behavior during 4h and 14h after hangover onset when evaluated by the elevated-plus maze and open field test respectively (p<0.05). Fear-related behavior was detected in hangover animals by the increase of freezing and decrease of line crossings and rearing frequency during 16h after hangover onset (p<0.001). Depression signs were found in hangover mice during 14h (p<0.05). Hangover mice showed a significant decrease in pain perception when tested by tail immersion test at the beginning of hangover (p<0.05). Our findings demonstrate a time-extension between 14 and 16h for hangover affective impairments. This study shows the long lasting effects of hangover over the phase of ethanol intoxication.


Assuntos
Afeto/efeitos dos fármacos , Intoxicação Alcoólica/psicologia , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Anedonia , Animais , Ansiedade/psicologia , Defecação/fisiologia , Medo/psicologia , Preferências Alimentares , Elevação dos Membros Posteriores/psicologia , Temperatura Alta , Imersão/fisiopatologia , Masculino , Camundongos , Atividade Motora/fisiologia , Medição da Dor , Percepção da Dor/efeitos dos fármacos , Estimulação Luminosa , Sacarose , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA