RESUMO
The Tropical Indo-Pacific (TIP) includes about two thirds of the world's tropical oceans and harbors an enormous number of marine species. The distributions of those species within the region is affected by habitat discontinuities and oceanographic features. As well as many smaller ones, the TIP contains seven large recognized biogeographic barriers that separate the Red Sea and Indian Ocean, the Indian from the Pacific Ocean, the central and eastern Pacific, the Hawaiian archipelago, the Marquesas and Easter Islands. We examined the genetic structuring of populations of Cirrhitichthys oxycephalus, a small cryptic species of reef fish, across its geographic range, which spans the longitudinal limits of the TIP. We assessed geographic variation in the mitochondrial cytb gene and the nuclear RAG1 gene, using 166 samples collected in 46 localities from the western to eastern edges of the TIP. Sequences from cytb show three well-structured groups that are separated by large genetic distances (1.58-2.96%): two in the Tropical Eastern Pacific (TEP), one at Clipperton Atoll another occupying the rest of that region and the third that ranges across the remainder of the TIP, from the central Pacific to the Red Sea and South Africa. These results indicate that the ~4,000 km wide Eastern Pacific Barrier between the central and eastern Pacific is an efficient barrier separating the two main groups. Further, the ~950 km of open ocean that isolates Clipperton Atoll from the rest of the TEP is also an effective barrier. Contrary to many other cases, various major and minor barriers from the Central Indo-Pacific to the Red Sea are not effective against dispersal by C. oxycephalus, although this species has not colonized the Hawiian islands and Easter Island. The nuclear gene partially supports the genetic structure evident in cytb, although all haplotypes are geographically mixed.
Assuntos
Variação Genética , Animais , Oceano Pacífico , Variação Genética/genética , Oceano Índico , Citocromos b/genética , Recifes de Corais , Filogenia , FilogeografiaRESUMO
INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) may be familial or sporadic, and twin studies have revealed that even sporadic forms have a significant genetic component. Variants in 55 nuclear genes have been associated with ALS and although mitochondrial dysfunction is observed in ALS, variants in mitochondrial genomes (mitogenomes) have not yet been tested for association with ALS. The aim of this study was to determine whether mitogenome variants are associated with ALS. METHODS: We conducted a genome-wide association study (GWAS) in mitogenomes of 1965 ALS patients and 2547 controls. RESULTS: We identified 51 mitogenome variants with p values <10-7, of which 13 had odds ratios (ORs) >1, in genes RNR1, ND1, CO1, CO3, ND5, ND6, and CYB, while 38 variants had OR <1 in genes RNR1, RNA2, ND1, ND2, CO2, ATP8, ATP6, CO3, ND3, ND4, ND5, ND6, and CYB. The frequencies of haplogroups H, U, and L, the most frequent in our ALS data set, were the same in different onset sites (bulbar, limb, spinal, and axial). Also, intra-haplogroup GWAS revealed unique ALS-associated variants in haplogroups L and U. DISCUSSION: Our study shows that mitogenome single nucleotide variants (SNVs) are associated with ALS and suggests that these SNVs could be included in routine genetic testing for ALS and that mitochondrial replacement therapy has the potential to serve as a basis for ALS treatment.
Assuntos
Esclerose Lateral Amiotrófica , Genoma Mitocondrial , Estudo de Associação Genômica Ampla , Humanos , Esclerose Lateral Amiotrófica/genética , Genoma Mitocondrial/genética , Masculino , Feminino , Pessoa de Meia-Idade , Haplótipos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética , Idoso , Variação Genética/genéticaRESUMO
BACKGROUND: In recent years, the mitochondria/immune system interaction has been proposed, so that variants of mitochondrial genome and levels of heteroplasmy might deregulate important metabolic processes in fighting infections, such as leprosy. METHODS: We sequenced the whole mitochondrial genome to investigate variants and heteroplasmy levels, considering patients with different clinical forms of leprosy and household contacts. After sequencing, a specific pipeline was used for preparation and bioinformatics analysis to select heteroplasmic variants. RESULTS: We found 116 variants in at least two of the subtypes of the case group (Borderline Tuberculoid, Borderline Lepromatous, Lepromatous), suggesting a possible clinical significance to these variants. Notably, 15 variants were exclusively found in these three clinical forms, of which five variants stand out for being missense (m.3791T > C in MT-ND1, m.5317C > A in MT-ND2, m.8545G > A in MT-ATP8, m.9044T > C in MT-ATP6 and m.15837T > C in MT-CYB). In addition, we found 26 variants shared only by leprosy poles, of which two are characterized as missense (m.4248T > C in MT-ND1 and m.8027G > A in MT-CO2). CONCLUSION: We found a significant number of variants and heteroplasmy levels in the leprosy patients from our cohort, as well as six genes that may influence leprosy susceptibility, suggesting for the first time that the mitogenome might be involved with the leprosy process, distinction of clinical forms and severity. Thus, future studies are needed to help understand the genetic consequences of these variants.
Assuntos
Genoma Mitocondrial , Hanseníase , Humanos , Heteroplasmia , Genoma Mitocondrial/genética , Hanseníase/genética , Mitocôndrias/genéticaRESUMO
OBJECTIVES: From an anthropological genetic perspective, little is known about the ethnogenesis of African descendants in Puerto Rico. Furthermore, historical interactions between Indigenous Caribbean and African descendant peoples that may be reflected in the ancestry of contemporary populations are understudied. Given this dearth of genetic research and the precedence for Afro-Indigenous interactions documented by historical, archeological, and other lines of evidence, we sought to assess the biogeographic origins of African descendant Puerto Ricans and to query the potential for Indigenous ancestry within this community. MATERIALS AND METHODS: Saliva samples were collected from 58 self-identified African descendant Puerto Ricans residing in Puerto Rico. We sequenced whole mitochondrial genomes and genotyped Y chromosome haplogroups for each male individual (n = 25). Summary statistics, comparative analyses, and network analysis were used to assess diversity and variation in haplogroup distribution between the sample and comparative populations. RESULTS: As indicated by mitochondrial haplogroups, 66% had African, 5% had European, and 29% had Indigenous American matrilines. Along the Y chromosome, 52% had African, 28% had Western European, 16% had Eurasian, and, notably, 4% had Indigenous American patrilines. Both mitochondrial and Y chromosome haplogroup frequencies were significantly different from several comparative populations. DISCUSSION: Biogeographic origins are consistent with historical accounts of African, Indigenous American, and European ancestry. However, this first report of Indigenous American paternal ancestry in Puerto Rico suggests distinctive features within African descendant communities on the island. Future studies expanding sampling and incorporating higher resolution genetic markers are necessary to more fully understand African descendant history in Puerto Rico.
Assuntos
DNA Mitocondrial , Etnicidade , Humanos , Masculino , Estados Unidos , Porto Rico , DNA Mitocondrial/genética , Haplótipos/genética , Índias OcidentaisRESUMO
In humans, mitochondria play key roles in the regulation of cellular functions, such as the regulation of the innate immune response and are targets of several pathogenic viruses and bacteria. Mycobacteria are intracellular pathogens that infect cells important to the immune system of organisms and target mitochondria to meet their energy demands. In this review, we discuss the main mechanisms by which mitochondria regulate the innate immune response of humans to mycobacterial infection, especially those that cause tuberculosis and leprosy. Notably, the importance of mitochondrial haplogroups and ancestry studies for mycobacterial diseases is also discussed.
Assuntos
Hanseníase , Mycobacterium , Tuberculose , Humanos , Sistema Imunitário , Hanseníase/genética , Mitocôndrias/genética , Mycobacterium/genética , Mycobacterium leprae , Tuberculose/genética , Tuberculose/microbiologiaRESUMO
For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993-2007) and pre-elimination phases (2008-2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima's D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.
RESUMO
OBJECTIVES: To analyze the mitochondrial diversity in three admixed populations and evaluate the historical migration effect of native southern population movement to Santiago (capital of Chile). The intensity of migration was quantified using three mitochondrial lineages restricted to South-Central native groups. METHODS: D-loop sequences were genotyped in 550 unrelated individuals from San Felipe-Los Andes (n = 108), Santiago (n = 217), and Concepción (n = 225). Sequence processing, alignment, and haplogroup inference were carried out, and different genetic structure analyses were performed for haplogroup frequencies and D-loop sequences. RESULTS: The Native lineages B2i2, C1b13, and D1g were the most frequent haplogroups, especially in Santiago (71.8%). Despite the distance, this city showed a high-genetic affinity with southern populations, including Concepción (~500 km distant) and native groups, rather than with those from San Felipe-Los Andes (<100 km distant). In fact, there was a negative correlation between geographical and genetic distance among these cities (r corr = -0.5593, p value = 0.8387). Network analysis revealed shared haplotypes between Santiago, Concepción, and other southern populations. Finally, we found lineages from Concepción acting as ancestral nodes in the northern clade. CONCLUSIONS: Considering the geographic distances from these cities, the results were not consistent with a model of genetic isolation by geographic distance, revealing the effects of a historical migration process from the south to the capital. We also show evidence of possible north-to-south migration during admixture onset in Concepción and in addition, we were able to identify previously unreported mitochondrial diversity in urban populations that became lost in Native groups post-European contact.
Assuntos
Variação Genética , Genética Populacional , Indígenas Sul-Americanos , Mitocôndrias , Humanos , Chile , Mitocôndrias/genética , Indígenas Sul-Americanos/genéticaRESUMO
Mexico is a rich source for anthropological and population genetic studies with high diversity in ethnic and linguistic groups. The country witnessed the rise and fall of major civilizations, including the Maya and Aztec, but resulting from European colonization, the population landscape has dramatically changed. Today, the majority of Mexicans do not identify themselves as Indigenous but as admixed, and appear to have very little in common with their pre-Columbian predecessors. However, when the maternally inherited mitochondrial (mt)DNA is investigated in the modern Mexican population, this is not the case. Control region sequences of 2021 samples deriving from all over the country revealed an overwhelming Indigenous American legacy, with almost 90% of mtDNAs belonging to the four major pan-American haplogroups A2, B2, C1, and D1. This finding supports a very low European contribution to the Mexican gene pool by female colonizers and confirms the effectiveness of employing uniparental markers as a tool to reconstruct a country's history. In addition, the distinct frequency and dispersal patterns of Indigenous American and West Eurasian clades highlight the benefit such large and country-wide databases provide for studying the impact of colonialism from a female perspective and population stratification. The importance of geographical database subsets not only for forensic application is clearly demonstrated.
Assuntos
DNA Mitocondrial/genética , Genética Populacional , População Negra/genética , Feminino , Pool Gênico , Haplótipos , Humanos , Masculino , México , Filogeografia , Controle de Qualidade , População Branca/genética , Indígena Americano ou Nativo do Alasca/genéticaRESUMO
Haplogroup Q originated in Eurasia around 30,000 years ago. It is present in Y-chromosomes from Asia and Europe at rather low frequencies. Since America is undoubtedly one of the continents where this haplogroup is highly represented, it has been defined as one of the founding haplogroups. Its M3 clade has been early described as the most frequent, with pan-American representation. However, it was also possible to find several other haplogroup Q clades at low frequencies. Numerous mutations have been described for haplogroup Q, allowing analysis of its variability and assignment of its geographic origin. We have analyzed 442 samples of unrelated men from Argentina and Paraguay belonging to haplogroup Q; here we report specifically on 27 Q (xM3) lineages. We tested 3 single-nucleotide polymorphisms (SNPs) by amplified product-length polymorphism (APLP) analysis, 3 SNPs for restriction fragment length polymorphism (RFLP) analysis, 15 SNPs by Sanger sequencing, and 17 short tandem repeats (STRs). Our approach allowed us to identify five subhaplogroups. Q-M3 and Q-CTS2730/Z780 are undoubtedly autochthonous lineages and represent the most frequent subhaplogroups, with significant representation in self-defined aboriginal populations, and their autochthonous status has been previously described. The aim of present work was to identify the continental origin of the remaining Q lineages. Thus, we analyzed the STR haplotypes for the samples and compared them with haplotypes described by other authors for the rest of the world. Even when haplogroup Q lineages have been extensively studied in America, some of them could have their origin in post-Columbian human migration from Europe and Middle East.
Assuntos
Cromossomos Humanos Y , Genética Populacional , América , Argentina , Ásia , Cromossomos Humanos Y/genética , Europa (Continente) , Haplótipos/genética , Humanos , Masculino , Repetições de Microssatélites , Oriente Médio , Paraguai , Filogenia , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Central Mexico is characterized by a complex topography that is the result of historic and contemporary tectonic and climatic factors. These events have influenced the evolutionary history of numerous freshwater fishes in the region. Nonetheless, recent studies have shown that life-history traits and ecological characteristics of species may influence dispersal capabilities and the degree of genetic connectivity. Goodea (Cyprinodontiformes: Goodeidae) is one of the most widely distributed and environmentally tolerant genera of goodeids. In this study, the authors analysed variation in the mitochondrial cytochrome b gene to evaluate the phylogeographic relationships, genetic structure, genetic diversity and demographic history of Goodea from across its distribution range. They found low genetic differentiation and identified shared haplotypes among several regions. Geographic segregation was found in samples southwest and northeast of the Lower Lerma region, with some internal isolated groups showing phylogeographic differentiation and unique haplotypes. The AMOVA best explained genetic structure when grouped by haplogroups rather than when grouped by recognized biogeographic regions. Several regions showed null genetic diversity, raising the possibility of dispersal mediated by humans. Finally, Bayesian Skyline Plot analysis showed a population expansion for the Southwest haplogroup, except for the Armería population and sub-group II of the Northeast haplogroup. All this suggests a recent colonization of Goodea atripinnis throughout some of the biogeographic regions currently inhabited by this species.
Assuntos
Evolução Biológica , Ciprinodontiformes/classificação , Ciprinodontiformes/genética , Variação Genética , Distribuição Animal , Animais , Teorema de Bayes , Citocromos b/genética , Água Doce , Genes Mitocondriais/genética , Deriva Genética , Genética Populacional , Haplótipos , México , FilogeografiaRESUMO
Physical performance is a multifactorial and complex trait influenced by environmental and hereditary factors. Environmental factors alone have been insufficient to characterize all outstanding phenotypes. Recent advances in genomic technologies have enabled the investigation of whole nuclear and mitochondrial genome sequences, increasing our ability to understand interindividual variability in physical performance. Our objective was to evaluate the association of mitochondrial polymorphic loci with physical performance in Brazilian elite military personnel. Eighty-eight male military personnel who participated in the Command Actions Course of the Army were selected. Total DNA was obtained from blood samples and a complete mitochondrial genome (mtDNA) was sequenced using Illumina MiSeq platform. Twenty-nine subjects completed the training program (FINISHED, 'F'), and fifty-nine failed to complete (NOT_FINISHED, 'NF'). The mtDNA from NF was slightly more similar to genomes from African countries frequently related to endurance level. Twenty-two distinct mtDNA haplogroups were identified corroborating the intense genetic admixture of the Brazilian population, but their distribution was similar between the two groups (FST=0.0009). Of 745 polymorphisms detected in the mtDNA, the position G11914A within the NADPH gene component of the electron transport chain, was statistically different between F and NF groups (P=0.011; OR: 4.286; 95%CI: 1.198-16.719), with a higher frequency of the G allele in group F individuals). The high performance of military personnel may be mediated by performance-related genomic traits. Thus, mitochondrial genetic markers such as the ND4 gene may play an important role on physical performance variability.
Assuntos
Humanos , Masculino , DNA Mitocondrial/genética , Militares , Haplótipos/genética , Brasil , Desempenho Físico Funcional , NADPRESUMO
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
RESUMO
PURPOSE: To investigate the association of partial-AZFc deletions in Chilean men with primary spermatogenic failure and their testicular histopathological phenotypes, analyzing the contribution of DAZ dosage, CDY1 copies, and Y-chromosome haplogroups. SUBJECTS AND METHODS: We studied 479 Chilean men: 334 infertile patients with histological examination (233 cases with spermatogenic defects and 101 normal spermatogenesis, obstructive controls, OC), and 145 normozoospermic controls (NC). AZFc subdeletions were detected by single-tagged sequences and single nucleotide variants analysis. DAZ-copy number was quantified by real-time qPCR. Y-chromosome haplogroups (Y-hg) were hierarchically genotyped through 16 biallelic-markers. RESULTS: The prevalence of AZFc-partial deletions was increased in cases (6%) compared with NC (1.4%) (P = 0.035). There was no difference between 143 Sertoli-cell only syndrome, 35 maturation arrest, or 35 mix atrophy patients and controls. However, gr/gr deletions were more frequent in 16 subjects with hypospermatogenesis compared with NC (P = 0.003) and OC (P = 0.013). Y-hg R was the most prevalent (~ 50%), but decreased among gr/gr deletions (21%, P = 0.03). The prevalence of Y-hg M increased in cases versus controls, both in total and non-deleted men (3.9 and 3.7% versus 0.4%, P = 0.009 and P = 0.016, respectively). Among gr/gr deletions, Y-hg H increased compared with non-deleted men (14.3% versus 0.4%, P = 0.0047). CONCLUSION: Partial-AZFc deletions in a Chilean admixed population are associated with secretory azo/oligozoospermia and might have a role in the development of hypospermatogenesis. Low represented haplogroups, Y-hg M and Y-hg H, show an association with the occurrence of spermatogenic failure and gr/gr deletions respectively; however, additional studies are required.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Y/genética , Proteína 1 Suprimida em Azoospermia/genética , Dosagem de Genes , Haplótipos , Infertilidade Masculina/patologia , Oligospermia/patologia , Adulto , Estudos de Casos e Controles , Loci Gênicos , Humanos , Infertilidade Masculina/etiologia , Masculino , Oligospermia/genética , Espermatogênese , Espermatozoides/metabolismo , Espermatozoides/patologiaRESUMO
OBJECTIVE: The purpose of this study is to evaluate the role mitochondrial inheritance plays in primary open-angle glaucoma (POAG) characteristics in African Americans. METHODS: POAG cases from the L1c2 and L1b mitochondrial haplogroups were compared in a retrospective case-case study. Twenty-six pairs of self-identified African American POAG cases from L1c2 and L1b mitochondrial haplogroups matched on age (mean [SD] = 71.2 [9.6] and 71.3 [9.6] years, respectively; p = 0.97), sex (21 female and 5 male pairs), and family history of glaucoma (positive in 15/26 [58%] pairs) were included. RESULTS: L1c2 subjects displayed higher vertical cup-to-disc ratio (0.75 [0.12] and 0.67 [0.16], respectively; p = 0.01, Bonferroni-corrected p = 0.08), worse pattern standard deviation on visual field (VF) testing (5.5 [3.5] and 3.5 [2.7]; p = 0.005, Bonferroni-corrected p = 0.02), and more severe glaucoma based on American Glaucoma Society staging criteria (p = 0.04, Bonferroni-corrected p = 0.32) compared to L1b subjects. L1c2 also trended towards worse mean deviation on VF compared to L1b (-8.2 [7.6] and -5.8 [6.8], respectively, p = 0.17). Best corrected visual acuity, central corneal thickness, maximum intraocular pressure (IOP), and cataract severity were comparable between L1c2 and L1b haplogroups (p ≥ 0.49), as was retinal nerve fiber layer thickness on optical coherence tomography (75.1 [14.1] and 75.1 [13.0]; p = 0.99). CONCLUSION: Results demonstrated worse glaucomatous cupping and more severe VF loss in the L1c2 compared to the L1b haplogroup despite comparable IOP. Findings implicate mitochondrial inheritance as a factor affecting POAG severity and may ultimately contribute to stratifying POAG patients into phenotypically and genotypically distinct subgroups.
RESUMO
Most studies on maternal lineages of South America populations are restricted to control region (CR) markers and, for some geographical regions, the number of studied samples does not adequately represent the existing diversity. This is the case of mitochondrial DNA (mtDNA) studies on Paraguay that are limited to two Native ethnic groups. To overcome this deficiency, we analysed the mitogenomes from 105 individuals living in Alto Paraná, the second most populated department of the country. Using the Precision ID mtDNA Whole Genome Panel, the molecule was sequenced on Ion S5. The majority of the haplotypes belong to the Native American lineages A, B, C and D. Analyses of maximum parsimony using mitogenome data retrieved from publications and in The 1000 Genomes Project showed a high number of new native American subclades in Paraguay. Also, none of the haplotypes found in Alto Paraná match the remaining South American samples, which include admixed populations from Colombia, Peru and Ecuador, and natives from Colombia and Ecuador. FST genetic distance analysis showed that the native genetic background of Alto Paraná has an intermediate position between the Amazonian groups and the admixed populations from Peru and Ecuador, supporting the theory about the Amazonian origin of the Tupi-Guarani and, at the same time, showing the influence of other linguistic groups.
Assuntos
DNA Mitocondrial , Genética Populacional , Genoma Mitocondrial , Herança Materna , Análise de Sequência de DNA , Etnicidade/genética , Feminino , Variação Genética , Haplótipos , Humanos , Masculino , Filogenia , América do SulRESUMO
The genetic composition of Amerindian descendants from Patagonia has long been a focus of interest, although the information available is still scarce for many geographic areas. Here, we report the first analysis of the variation in the mitochondrial DNA (mtDNA) control region for an area of northwestern Patagonia, the North of Neuquén, with the aim of studying the processes and historical events that modeled the evolutionary history of these human groups. We analyzed 113 individuals from two localities of northern Neuquén, along with 6 from southern Neuquén and 223 previously published mtDNA sequences from neighboring areas in Argentina and Chile. We estimated the haplotypic variation and spatial structure of molecular variability. Amerindian subhaplogroups predominate in the two samples from northern Neuquén (n = 70), with D1g and C1b13 the most represented, although in different proportions. These samples exhibit Amerindian mtDNA haplotypes similar to the variants from neighboring areas. Most of haplotype variability was within group; variation among groups was relatively low and scarcely associated with geographical space. The most frequent subhaplogroups in northern Neuquén are characteristic of native populations from Patagonia and Chilean Araucanía, and probably originated in the region during the Late Pleistocene or Early Holocene. However, the spatial variation of mtDNA haplotypes departs from a latitudinal pattern and suggests differential levels of gene flow among areas during the Late Holocene, with moderate levels across the North of Neuquén as well as between this area and neighboring populations from Chile, the South of Neuquén, and Río Negro.
RESUMO
The genetic composition of the Brazilian population was shaped by interethnic admixture between autochthonous Native Americans, Europeans settlers and African slaves. This structure, characteristic of most American populations, implies the need for large population forensic databases to capture the high diversity that is usually associated with admixed populations. In the present work, we sequenced the control region of mitochondrial DNA from 205 non-related individuals living in the Rio de Janeiro metropolitan region. Overall high haplotype diversity (0.9994⯱â¯0.0006) was observed, and pairwise comparisons showed a high proportion of haplotype pairs with more than one-point differences. When ignoring homopolymeric tracts, pairwise comparisons showed no differences 0.18% of the time, and differences in a single position were found with a frequency of 0.32%. A high percentage of African mtDNA was found (42%), with lineages showing a major South West origin. For the West Eurasian and Native American haplogroups (representing 32% and 26%, respectively) it was not possible to evaluate a clear geographic or linguistic affiliation. When grouping the mtDNA lineages according to their continental origin (Native American, European and African), differences were observed for the ancestry proportions estimated with autosomal ancestry-informative markers, suggesting some level of genetic substructure. The results from this study are in accordance with historical data where admixture processes are confirmed with a strong maternal contribution of African maternal ancestry and a relevant contribution of Native American maternal ancestry. Moreover, the evidence for some degree of association between mtDNA and autosomal information should be considered when combining these types of markers in forensic analysis.
Assuntos
DNA Mitocondrial/genética , Genética Populacional , Brasil , Haplótipos , Humanos , Reação em Cadeia da Polimerase , Grupos Raciais/genéticaRESUMO
We identified mitochondrial DNA haplogroups A, B, C, and D in 75 present-day Maya individuals, 24 Maya individuals of the colonial period, and 1 pre-Columbian Maya individual from Quintana Roo, Mexico. We examined these data together with those of 21 Maya populations reported in the literature, comprising 647 present-day Maya individuals and 71 ancient Maya individuals. A demographic study based on analysis of fertility and endogamy was carried out in two modern Maya populations to identify cultural factors that influence the mitochondrial haplogroup genetic diversity. Most present-day and ancient Maya populations show a distribution pattern of mitochondrial haplogroup frequencies A, C, B, and D in decreasing order, with haplogroup D absent in several populations. Considering only modern Maya populations with at least 50 individuals analyzed, the present-day Tzotzil and Lacandon populations from Chiapas show the highest and lowest genetic diversity, 0.706 and 0.025, respectively. Our results show small genetic differences between the Maya populations, with the exception of the present-day Tojolabal and Lacandon populations from Chiapas. The present-day Lacandon population from Chiapas differs from other Maya populations in showing almost only haplogroup A. This result suggests a long history of isolation and endogamy as well as a possible founder effect inside the Lacandonian rain forest. The contemporary Tojolabal population is the only one with an unusual mitochondrial haplogroup pattern, exhibiting a frequency of haplogroup B higher than A and the absence of haplogroup C. With a small sample size, the pre-Columbian Copán Maya show a high content of haplogroup C and a low frequency of haplogroup D. The genetic homogeneity of the Maya populations is indicative of a common origin and nearly continuous gene flow in the long term within a general isolation of the whole group, in contrast to the Nahua populations that had different origins. Our demographic study showed high fertility rates and high levels of endogamy in the present-day Maya populations from Quintana Roo that are consistent with their general low genetic diversity. We propose that the genetic similarity among ancient and present-day Maya populations persists due to a strong sense of social cohesion and identity that impacts their marriage practices, keeping this cultural group isolated. These factors have constrained gene flow inside the Maya region and have impeded the differentiation among the Maya. Discernment of genetic differentiation within the peninsula is constrained by the lack of sampling documentation in the literature.
Assuntos
DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional/estatística & dados numéricos , Haplótipos/genética , Indígenas Norte-Americanos/genética , Adolescente , Adulto , Evolução Molecular , Feminino , Variação Genética/genética , Humanos , Masculino , México/etnologia , Filogenia , Adulto JovemRESUMO
ANTECEDENTES: Los genotipos asociados con la alergia a la leche de vaca (ALV) son desconocidos. Aún no han podido ser replicados en poblaciones independientes, y podrían ser responsables de la marcada variabilidad de la respuesta clínica individual a las proteínas lácteas. OBJETIVO: Caracterizar haplogrupos, de la Región D-Loop del ADN mitocondrial, en un grupo de niños ALV, con el fin de arribar a un mejor conocimiento de la herencia biológica y genética en la etiología de la enfermedad. POBLACION Y METODO: Diseño: Análisis de mutaciones o variantes de la región D-loop del genoma mitocondrial. Población: 41 niños de ambos sexos de 0-2 años, 11 alérgicos ALV y 30 controles. (Río Cuarto, Córdoba, Argentina) Los pacientes ALV se dividieron, según la sintomatología que presentaban en 6 casos con Dermatitis Atópica (DA) + Enfermedad Gastrointestinal (EGI) y en 5 casos con Rinitis y Asma (RA). La Región D-Loop del genoma mitocondrial se amplificó por PCR. El análisis filogenético fue calculado usando el programa CLUSTAL OMEGA, the Neighbor-Joining, BLOSUM62, con los datos estudiados y grabados por Jukes-Cantor y luego con Kimura-2, programas específicos disponibles (software). RESULTADOS: Se encontró una mutación o variante nucleotídica no descripta T16519C en la transición de haplogrupos asociada a pacientes ALV con DA+EGI en 6/6 casos, comparados con 5/5 casos con RA que no la presentaron, mientras que en los controles se la observó solo en 6/30, p=0,0312; RR 2,900. CONCLUSIONES: Estos hallazgos sugieren que esta mutación probablemente aumente la posibilidad de padecer ALV asociada con DA+EGI. (AU)
BACKGROUND: Genotypes associated to cow's milk allergy (CMA) are unknown. They have not been replicated in independent populations, and could be responsible for the marked variability in individual clinical response to milk proteins. OBJECTIVE: To characterize haplogroups of the D-Loop region of mitochondrial DNA in a group of children allergic to cow's milk in order to arrive at a better understanding of biological and genetic heritability in the etiology of the disease. POPULATION AND METHOD: Design: Analysis of mutations or variants of the D-loop of mitochondrial genome region. Population: 41 children of both sexes from 0-2 years, 11 with CMA and 30 healthy subjects (controls). (Río Cuarto, Córdoba, Argentina). The CMA patients were divided according to the symptoms presenting in: 6 cases with Atopic Dermatitis (AD) + Gastrointestinal disease (GID) and in 5 cases with Rhinitis and Asthma (RA). The D-Loop Region of mitochondrial genome was amplified by PCR. Phylogenetic analysis was calculated using the program CLUSTAL OMEGA, the Neighbor-Joining, BLOSUM62, with studied and recorded by Jukes-Cantor data and then with Kimura-2, available specific programs (software). RESULTS: We found a non-descript mutation or variant nucleotide T16519C in the transition of haplogroups associated with CMA patients with AD+ GID in 6/6 cases, compared with 5/5 cases with RA that failed it, whereas in controls was observed it only in 6/30, p = 0, 0312 RR 2,900. CONCLUSIONS: These features suggest that this mutation probably increases the possibility of suffering CMA associated with AD + GID. (AU)
Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Hipersensibilidade a Leite/diagnóstico , Hipersensibilidade a Leite/genética , Genoma Mitocondrial/genéticaRESUMO
We sequenced the mitochondrial cytochrome b gene of 141 lowland tapirs (Tapirus terrestris) - representing the largest geographical distribution sample of this species studied across of South America to date. We compare our new data regard to two previous works on population structure and molecular systematics of T. terrestris. Our data agree with the Thoisy et al.'s work in (1) the Northern Western Amazon basin was the area with the highest gene diversity levels in T. terrestris, being probably the area of initial diversification; (2) there was no clear association between haplogroups and specific geographical areas; (3) there were clear population decreases during the last glacial maximum for the different haplogroups detected, followed by population expansions during the Holocene; and (4) our temporal splits among different T. terrestris haplogroups coincided with the first molecular clock approach carried out by these authors (fossil calibration). Nevertheless, our study disagreed regard to other aspects of the Thoisy et al.'s claims: (1) meanwhile, they detected four relevant clades in their data, we put forward six different relevant clades; (2) the Amazon River was not a strong barrier for haplotype dispersion in T. terrestris; and (3) we found reciprocal monophyly between T. terrestris and T. pinchaque. Additionally, we sequenced 42 individuals (T. terrestris, T. pinchaque, T. bairdii, and the alleged "new species", T. kabomani) for three concatenated mitochondrial genes (Cyt-b, COI, and COII) agreeing quite well with the view of Voss et al., and against of the claims of Cozzuol et al. Tapirus kabomani should be not considered as a full species with the results obtained throughout the mitochondrial sequences.