Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.908
Filtrar
1.
Cardiovasc Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086175

RESUMO

Atherosclerosis remains the leading cause of death globally. Although its focal pathology is atheroma that develops in arterial walls, atherosclerosis is a systemic disease involving contributions by many organs and tissues. It is now established that the immune system causally contributes to all phases of atherosclerosis. Recent and emerging evidence positions the nervous system as a key modulator of inflammatory processes that underly atherosclerosis. This neuro-immune crosstalk, we are learning, is bidirectional, and immune regulated afferent signaling is becoming increasingly recognized in atherosclerosis. Here, we summarize data and concepts that link the immune and nervous systems in atherosclerosis by focusing on two important sites, the arterial vessel and the bone marrow.

2.
DNA Repair (Amst) ; 141: 103733, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39096698

RESUMO

Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.

3.
Cureus ; 16(7): e63924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39104967

RESUMO

Extramedullary hematopoiesis (EMH) is the formation of blood cells outside the bone marrow, typically occurring in response to chronic anemia or bone marrow dysfunction. While EMH is most commonly observed in the liver, spleen, and lymph nodes, its occurrence in the kidney is exceedingly rare. In this case report, we are presenting a case of a 49-year-old male diagnosed with polycythemia vera who had an incidental right renal mass, which was histo-pathologically proven as extramedullary hematopoiesis in the right kidney mimicking lymphoma. This case underscores the importance of considering EMH in the differential diagnosis of renal masses, especially in patients with a history of myeloproliferative disorders. Early recognition and appropriate management are crucial to avoid unnecessary interventions and manage the underlying hematological condition effectively. Accurate diagnosis through histopathological examination is crucial to avoid unnecessary surgical interventions.

4.
Cureus ; 16(7): e63945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39105018

RESUMO

The formation of the blood elements and their maturation is called hematopoiesis. In adults, this typically takes place in the bone marrow of vertebrae, ribs, and long bones. In contrast, during fetal development, the primary sites of hematopoiesis are the spleen, liver, and the yolk sac. This process of hematopoiesis, when it occurs in sites other than the bone marrow, is called the extramedullary hematopoiesis (EMH). Extramedullary hematopoiesis usually happens in patients with blood disorders like sickle cell disease and thalassemia, where there is failure of hematopoiesis in the primary sites. Here, we present a young male with beta-thalassemia who presented with shortness of breath and palpitations for one month. This manuscript discusses the imaging findings of the EMH in our patient.

5.
J Clin Oncol ; : JCO2401487, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094067

RESUMO

BACKGROUND: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell (PBSC) transplantation for non-Hodgkin lymphoma (NHL). Prior studies report an association between clonal hematopoiesis (CH) in PBSC and risk of t-MN, but small samples precluded examination of risk within specific sub-populations. METHODS: Targeted DNA sequencing was performed to identify CH mutations in PBSC from a retrospective cohort of 984 NHL patients (median age at transplant 57y; range: 18-78). Fine-Gray proportional subdistribution hazard regression models estimated association between number of CH mutations and t-MN, adjusting for demographic, clinical, and therapeutic variables. Secondary analyses evaluated association between CH and t-MN among males and females. RESULTS: CH was identified in PBSC from 366 patients (37.2%). t-MN developed in 60 patients after median follow-up of 5y. Presence of ≥2 mutations conferred increased t-MN risk (adjusted hazard ratio [aHR]=2.10, 95% confidence interval [CI]=1.08-4.11, p=0.029). CH was associated with increased t-MN risk among males (aHR=1.83, 95%CI=1.01-3.31) but not females (aHR=0.56, 95%CI=0.15-2.09). Although prevalence and type of CH mutations in PBSC was comparable, the 8y cumulative incidence of t-MN was higher among males vs. females with CH (12.4% vs. 3.6%) but was similar between males and females without CH (4.9% vs. 3.9%). Expansion of CH clones from PBSC to t-MN was seen only among males. CONCLUSIONS: Presence of CH mutations in PBSC confers increased risk of t-MN after autologous transplantation in male but not female patients with NHL. Factors underlying sex-based differences in risk of CH progression to t-MN merit further investigation.

6.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39098022

RESUMO

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Assuntos
Transformação Celular Neoplásica , Neoplasias Hematológicas , Mutação , Humanos , Neoplasias Hematológicas/genética , Transformação Celular Neoplásica/genética , Infecções , Imunidade Inata , Síndromes Mielodisplásicas/genética , Animais , Estresse Fisiológico
7.
Front Immunol ; 15: 1405210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947315

RESUMO

In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.


Assuntos
Transplante de Medula Óssea , Hematopoese , Animais , Transplante de Medula Óssea/métodos , Camundongos , Células-Tronco Hematopoéticas/imunologia , Camundongos Endogâmicos C57BL , Reconstituição Imune , Regeneração
8.
Stem Cell Rev Rep ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976142

RESUMO

Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.

9.
J Mol Histol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969952

RESUMO

Conventional treatments exhibit various side effects on chronic stress anemia. Extramedullary stress erythropoiesis is a compensatory mechanism, which may effectively counteract anemia. Angelica sinensis polysaccharides (ASP) are the main active ingredient found in Angelica sinensis and exhibit antioxidant and hematopoietic effects. However, the effects of ASP on extramedullary stress erythropoiesis remain to be unclear. Here, we demonstrated the protective effects of ASP on chemotherapeutic drug 5-fluorouracil (5-FU)-induced decline in peripheral blood parameters such as RBC counts, HGB, HCT, and MCH, and the decline of BFU-E colony enumeration in the bone marrow. Meanwhile, ASP promoted extramedullary erythropoiesis, increasing cellular proliferation in the splenic red pulp and cyclin D1 protein expression, abrogating phase G0/G1 arrest of c-kit+ cells in mouse spleen. RT-qPCR and immunohistochemistry further revealed that ASP increased macrophage chemokine Ccl2 genetic expression and the number of F4/80+ macrophages in the spleen. The colony-forming assay showed that ASP significantly increased splenic BFU-E. Furthermore, we found that ASP facilitated glycolytic genes including Hk2, Pgk1, Pkm, Pdk1, and Ldha via PI3K/Akt/HIF2α signaling in the spleen. Subsequently, ASP declined pro-proinflammatory factor IL-1ß, whereas upregulating erythroid proliferation-associated genes Gdf15, Bmp4, Wnt2b, and Wnt8a. Moreover, ASP facilitated EPO/STAT5 signaling in splenic macrophages, thus enhancing erythroid lineage Gata2 genetic expression. Our study indicated that ASP may improve glycolysis, promoting the activity of splenic macrophages, subsequently promoting erythroid progenitor cell expansion. Additionally, ASP facilitates erythroid differentiation via macrophage-mediated EpoR/STAT5 signaling; suggesting it might be a promising strategy for stress anemia treatment.

10.
Stem Cell Rev Rep ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965147

RESUMO

Hematopoietic cell transplantation (HCT) is an important therapy for many hematological malignancies as well as some non-malignant diseases. Post-transplant hematopoiesis is affected by multiple factors, and the mechanisms of delayed post-transplant hematopoiesis remain poorly understood. Patients undergoing HCT often suffer from significantly reduced food intake due to complications induced by preconditioning treatments. Here, we used a dietary restriction (DR) mouse model to study the effect of post-transplant dietary reduction on hematopoiesis and hematopoietic stem cells (HSCs). We found that post-transplant DR significantly inhibited both lymphopoiesis and myelopoiesis in the primary recipient mice. However, when bone marrow cells (BMCs) from the primary recipient mice were serially transplanted into secondary and tertiary recipient mice, the HSCs derived from the primary recipient mice, which were exposed to post-transplant DR, exhibited a much higher reconstitution capacity. Transplantation experiments with purified HSCs showed that post-transplant DR greatly inhibited hematopoietic stem cell (HSC) expansion. Additionally, post-transplant DR reshaped the gut microbiotas of the recipient mice, which inhibited inflammatory responses and thus may have contributed to maintaining HSC function. Our findings may have important implications for clinical work because reduced food intake and problems with digestion and absorption are common in patients undergoing HCT.

11.
Cell Rep ; : 114498, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39084219

RESUMO

Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.

12.
J Intern Med ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073225

RESUMO

BACKGROUND: Little is known regarding the association between clonal hematopoiesis of indeterminate potential (CHIP) and risk of neurodegenerative diseases. OBJECTIVE: To estimate the risk of neurodegenerative diseases among individuals with CHIP. METHODS: We conducted a community-based cohort study based on UK Biobank and used Cox regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of any neurodegenerative disease, subtypes of neurodegenerative diseases (including primary neurodegenerative diseases, vascular neurodegenerative diseases, and other neurodegenerative diseases), and specific diagnoses of neurodegenerative diseases (i.e., amyotrophic lateral sclerosis [ALS], Alzheimer's disease [AD], and Parkinson's disease [PD]) associated with CHIP. RESULTS: We identified 14,440 individuals with CHIP and 450,907 individuals without CHIP. Individuals with CHIP had an increased risk of any neurodegenerative disease (HR 1.10, 95% CI: 1.01-1.19). We also observed a statistically significantly increased risk for vascular neurodegenerative diseases (HR 1.31, 95% CI 1.05-1.63) and ALS (HR 1.50, 95% CI 1.05-2.15). An increased risk was also noted for other neurodegenerative diseases (HR 1.13, 95% CI 0.97-1.32), although not statistically significant. Null association was noted for primary neurodegenerative diseases (HR 1.06, 95% CI 0.96-1.17), AD (HR 1.04, 95% CI 0.88-1.23), and PD (HR 1.02, 95% CI 0.86-1.21). The risk increase in any neurodegenerative disease was mainly observed for DNMT3A-mutant CHIP, ASXL1-mutant CHIP, or SRSF2-mutant CHIP. CONCLUSION: Individuals with CHIP were at an increased risk of neurodegenerative diseases, primarily vascular neurodegenerative diseases and ALS, but potentially also other neurodegenerative diseases. These findings suggest potential shared mechanisms between CHIP and neurodegenerative diseases.

13.
Stem Cell Res Ther ; 15(1): 235, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075526

RESUMO

BACKGROUND: Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS: In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS: We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION: Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.


Assuntos
Feto , Hematopoese , Células-Tronco Hematopoéticas , Camundongos Knockout , Fatores de Transcrição HES-1 , Animais , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Feto/citologia , Feto/metabolismo , Diferenciação Celular , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
14.
J Biol Chem ; 300(8): 107548, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992437

RESUMO

Fanconi anemia (FA) is an inherited disorder of DNA repair due to mutation in one of 20+ interrelated genes that repair intrastrand DNA crosslinks and rescue collapsed or stalled replication forks. The most common hematologic abnormality in FA is anemia, but progression to bone marrow failure (BMF), clonal hematopoiesis, or acute myeloid leukemia may also occur. In prior studies, we found that Fanconi DNA repair is required for successful emergency granulopoiesis; the process for rapid neutrophil production during the innate immune response. Specifically, Fancc-/- mice did not develop neutrophilia in response to emergency granulopoiesis stimuli, but instead exhibited apoptosis of bone marrow hematopoietic stem cells and differentiating neutrophils. Repeated emergency granulopoiesis challenges induced BMF in most Fancc-/- mice, with acute myeloid leukemia in survivors. In contrast, we found equivalent neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice and WT mice, without BMF. Since termination of emergency granulopoiesis is triggered by accumulation of bone marrow neutrophils, we hypothesize neutrophilia protects Fancc-/-Tp53+/- bone marrow from the stress of a sustained inflammation that is experienced by Fancc-/- mice. In the current work, we found that blocking neutrophil accumulation during emergency granulopoiesis led to BMF in Fancc-/-Tp53+/- mice, consistent with this hypothesis. Blocking neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice (but not WT) impaired cell cycle checkpoint activity, also found in Fancc-/- mice. Mechanisms for loss of cell cycle checkpoints during infectious disease challenges may define molecular markers of FA progression, or suggest therapeutic targets for bone marrow protection in this disorder.

15.
J Biol Chem ; 300(8): 107542, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992436

RESUMO

Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM), and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.

16.
Methods Mol Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38967910

RESUMO

The hematopoietic system constantly produces new blood cells through hematopoiesis, and maintaining this balance is vital for human health. This balance is maintained by self-renewing hematopoietic stem cells (HSCs) and various progenitor cells. Under typical circumstances, HSCs are not abundantly found in peripheral blood; hence, their mobilization from the bone marrow is vital. Hematopoietic growth factors achieve this effectively, enabling mobilization and thus allowing blood sample and thus HSC collection via apheresis. Securing a sufficient supply of HSCs is vital for successful hematopoietic reconstitution and the rapid integration of committed cells. Thus, isolation and expansion of HSCs are crucial for convenient extraction, production of transplantable quantities, genetic modifications for enhanced therapeutic efficacy, and as a source of increased/expanded/synthesized blood cells in vitro. In conclusion, the isolation and expansion of HSCs play pivotal roles in both regenerative medicine and hematology. This protocol describes the isolation of human HSCs by providing an overview of the primary method for isolating human hematopoietic stem cells from apheresis blood samples and sheds light on human HSC studies and developments in research and medicine.

17.
Dev Cell ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38996461

RESUMO

Hematopoietic stem cell (HSC)-independent lymphopoiesis has been elucidated in murine embryos. However, our understanding regarding human embryonic counterparts remains limited. Here, we demonstrated the presence of human yolk sac-derived lymphoid-biased progenitors (YSLPs) expressing CD34, IL7R, LTB, and IRF8 at Carnegie stage 10, much earlier than the first HSC emergence. The number and lymphopoietic potential of these progenitors were both significantly higher in the yolk sac than the embryo proper at this early stage. Importantly, single-cell/bulk culture and CITE-seq have elucidated the tendency of YSLP to differentiate into innate lymphoid cells and dendritic cells. Notably, lymphoid progenitors in fetal liver before and after HSC seeding displayed distinct transcriptional features, with the former closely resembling those of YSLPs. Overall, our data identified the origin, potential, and migratory dynamics of innate lymphoid-biased multipotent progenitors in human yolk sac before HSC emergence, providing insights for understanding the stepwise establishment of innate immune system in humans.

18.
Front Med (Lausanne) ; 11: 1434533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015780
19.
Adv Exp Med Biol ; 1459: 243-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017847

RESUMO

Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.


Assuntos
Eritropoese , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Eritropoese/genética , Humanos , Animais , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética
20.
Adv Exp Med Biol ; 1459: 405-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017854

RESUMO

HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio , Nucleofosmina , Proto-Oncogene Mas , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Animais , Leucemia/genética , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...