Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466215

RESUMO

Retinal ischemia-reperfusion (rI/R) generates an oxidative condition causing the death of neuronal cells. Epigallocatechin 3-gallate (EGCG) has antioxidant and anti-inflammatory properties. Nonetheless, its correlation with the pathway of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) for the protection of the retina is unknown. We aimed to evaluate the neuroprotective efficacy of single-doses of EGCG in rI/R and its association with Nrf2/Ho-1 expression. In albino rabbits, rI/R was induced and single-doses of EGCG in saline (0-30 mg/kg) were intravenously administered to select an optimal EGCG concentration that protects from retina damage. To reach this goal, retinal structural changes, gliosis by glial fibrillary acidic protein (GFAP) immunostaining, and lipid peroxidation level by TBARS (thiobarbituric acid reactive substance) assay were determined. EGCG in a dose of 15 mg/kg (E15) presented the lowest levels of histological damage, gliosis, and oxidative stress in the studied groups. To determine the neuroprotective efficacy of E15 in a timeline (6, 24, and 48 h after rI/R), and its association with the Nrf2/HO-1 pathway, the following assays were done by immunofluorescence: apoptosis (TUNEL assay), necrosis (high-mobility group box-1; HMGB1), Nrf2, and HO-1. In addition, the Ho-1 mRNA (qPCR) and lipid peroxidation levels were evaluated. E15 showed a protective effect during the first 6 h, compared to 24 and 48 h after rI/R, as revealed by a decrease in the levels of all damage markers. Nuclear translocation Nrf2 and HO-1 staining were increased, including Ho-1 mRNA levels. In conclusion, a single dose of E15 decreases the death of neuronal cells induced by oxidative stress during the first 6 h after rI/R. This protective effect is associated with the nuclear translocation of Nrf2 and with an elevation of Ho-1 expression.


Assuntos
Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose , Catequina/farmacologia , Catequina/uso terapêutico , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Peroxidação de Lipídeos , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Coelhos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(7): e7374, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011596

RESUMO

This study aimed to investigate the association of serum high-mobility group box-1 (HMGB1) and toll-like receptor 4 (TLR4) expressions with the risk of epilepsy as well as their correlations with disease severity and resistance to anti-epilepsy drugs. One hundred and five epilepsy patients and 100 healthy controls (HCs) were enrolled in this case-control study, and serum samples were collected from all participants to assess the HMGB1 and TLR4 expressions by enzyme-linked immunosorbent assay (ELISA). Both serum HMGB1 (P<0.001) and TLR4 (P<0.001) expressions were higher in epilepsy patients than in HCs, and they displayed good predictive values for risk of epilepsy. Moreover, HMGB1 was positively correlated with TLR4 level (r=0.735, P<0.001). HMGB1 and TLR4 levels were both elevated in patients with an average seizure duration >5 min compared to patients with a seizure duration ≤5 min (P=0.001 and P=0.014, respectively). Also, HMGB1 and TLR4 were increased in patients with seizure frequency >3 times per month compared to patients with seizure frequency ≤3 times per month (both P=0.001). In addition, HMGB1 and TLR4 expressions were higher in intractable cases compared to drug-responsive cases (P<0.001). In conclusion, both HMGB1 and TLR4 expressions were correlated with increased risk and severity of epilepsy and their level was higher in patients resistant to anti-epilepsy drugs.


Assuntos
Humanos , Masculino , Feminino , Adulto , Proteína HMGB1/sangue , Epilepsia/sangue , Receptor 4 Toll-Like/sangue , Anticonvulsivantes/uso terapêutico , Índice de Gravidade de Doença , Ensaio de Imunoadsorção Enzimática , Estudos de Casos e Controles , Valor Preditivo dos Testes , Fatores de Risco , Epilepsia/tratamento farmacológico
3.
Clin Colorectal Cancer ; 17(1): 25-31, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29223362

RESUMO

Although some progress has been made in recent years with the development of more effective chemotherapy regimens, new treatment approaches are needed to improve outcomes for patients with pancreatic adenocarcinoma. The cellular process of autophagy, a cell survival mechanism that allows cancer cells to survive the hazardous conditions of the tumor microenvironment and treatment, has emerged as a viable target in pancreatic cancer. We review the mechanism of autophagy, its role in pancreatic carcinogenesis, the preclinical and clinical evidence supporting targeting autophagy in patients with pancreatic adenocarcinoma, and areas of future investigation that hold promise for improving this treatment approach.


Assuntos
Adenocarcinoma/patologia , Autofagia/fisiologia , Neoplasias Pancreáticas/patologia , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA