Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 900531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212841

RESUMO

Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2-3) and moderately thermophilic conditions (50-60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including "first line of defense" mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the "second line of defense" where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.

2.
Acta Biotheor ; 70(2): 15, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575816

RESUMO

Reconstructing the genetic traits of the Last Common Ancestor (LCA) and the Tree of Life (TOL) are two examples of the reaches of contemporary molecular phylogenetics. Nevertheless, the whole enterprise has led to paradoxical results. The presence of Lateral Gene Transfer poses epistemic and empirical challenges to meet these goals; the discussion around this subject has been enriched by arguments from philosophers and historians of science. At the same time, a few but influential research groups have aimed to reconstruct the LCA with rich-in-detail hypotheses and high-resolution gene catalogs and metabolic traits. We argue that LGT poses insurmountable challenges for detailed and rich in details reconstructions and propose, instead, a middle-ground position with the reconstruction of a slim LCA based on traits under strong pressures of Negative Natural Selection, and for the need of consilience with evidence from organismal biology and geochemistry. We defend a cautionary perspective that goes beyond the statistical analysis of gene similarities and assumes the broader consequences of evolving empirical data and epistemic pluralism in the reconstruction of early life.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Animais , Filogenia
3.
Microbiome ; 9(1): 88, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845910

RESUMO

BACKGROUND: Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. RESULTS: We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp's survival. The identification of probiotic bacterial species that are effective in the host's colonization is important to promote animal health and prevent disease. CONCLUSIONS: This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world. Video Abstract.


Assuntos
Microbiota , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Humanos , Necrose , Filogenia , RNA Ribossômico 16S/genética , Sobreviventes , Vibrio , Vibrio parahaemolyticus/genética
4.
Genes (Basel) ; 11(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260256

RESUMO

Organisms that thrive in extremely acidic environments (≤pH 3.5) are of widespread importance in industrial applications, environmental issues, and evolutionary studies. Leptospirillum spp. constitute the only extremely acidophilic microbes in the phylogenetically deep-rooted bacterial phylum Nitrospirae. Leptospirilli are Gram-negative, obligatory chemolithoautotrophic, aerobic, ferrous iron oxidizers. This paper predicts genes that Leptospirilli use to survive at low pH and infers their evolutionary trajectory. Phylogenetic and other bioinformatic approaches suggest that these genes can be classified into (i) "first line of defense", involved in the prevention of the entry of protons into the cell, and (ii) neutralization or expulsion of protons that enter the cell. The first line of defense includes potassium transporters, predicted to form an inside positive membrane potential, spermidines, hopanoids, and Slps (starvation-inducible outer membrane proteins). The "second line of defense" includes proton pumps and enzymes that consume protons. Maximum parsimony, clustering methods, and gene alignments are used to infer the evolutionary trajectory that potentially enabled the ancestral Leptospirillum to transition from a postulated circum-neutral pH environment to an extremely acidic one. The hypothesized trajectory includes gene gains/loss events driven extensively by horizontal gene transfer, gene duplications, gene mutations, and genomic rearrangements.


Assuntos
Ácidos/toxicidade , Bactérias/genética , Genoma Bacteriano/genética , Genômica , Ácidos/metabolismo , Bactérias/metabolismo , Compostos Férricos/metabolismo , Transferência Genética Horizontal/genética , Genoma Bacteriano/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Filogenia
5.
New Phytol ; 214(1): 376-387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27905116

RESUMO

Horizontal gene transfer (HGT) among flowering plant mitochondria occurs frequently and, in most cases, leads to nonfunctional transgenes in the recipient genome. Parasitic plants are particularly prone to this phenomenon, but their mitochondrial genomes (mtDNA) have been largely unexplored. We undertook a large-scale mitochondrial genomic study of the holoparasitic plant Lophophytum mirabile (Balanophoraceae). Comprehensive phylogenetic analyses were performed to address the frequency, origin, and impact of HGT. The sequencing of the complete mtDNA of L. mirabile revealed the unprecedented acquisition of host-derived mitochondrial genes, representing 80% of the protein-coding gene content. All but two of these foreign genes replaced the native homologs and are probably functional in energy metabolism. The genome consists of 54 circular-mapping chromosomes, 25 of which carry no intact genes. The likely functional replacement of up to 26 genes in L. mirabile represents a stunning example of the potential effect of rampant HGT on plant mitochondria. The use of host-derived genes may have a positive effect on the host-parasite relationship, but could also be the result of nonadaptive forces.


Assuntos
Genes Mitocondriais , Plantas/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Bases , Mapeamento Cromossômico , DNA Mitocondrial/genética , Ácidos Graxos Insaturados/genética , Transferência Genética Horizontal , Genes de Plantas , Especiação Genética , Genoma Mitocondrial , Fases de Leitura Aberta/genética , Filogenia , Seleção Genética
6.
Front Microbiol ; 7: 2035, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082953

RESUMO

Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e-5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).

7.
Front Genet ; 4: 143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967008

RESUMO

The cell invasion mechanism of Trypanosoma cruzi has similarities with some intracellular bacterial taxa especially regarding calcium mobilization. This mechanism is not observed in other trypanosomatids, suggesting that the molecules involved in this type of cell invasion were a product of (1) acquisition by horizontal gene transfer (HGT); (2) secondary loss in the other trypanosomatid lineages of the mechanism inherited since the bifurcation Bacteria-Neomura (1.9 billion to 900 million years ago); or (3) de novo evolution from non-homologous proteins via convergent evolution. Similar to T. cruzi, several bacterial genera require increased host cell cytosolic calcium for intracellular invasion. Among intracellular bacteria, the mechanism of host cell invasion of genus Salmonella is the most similar to T. cruzi. The invasion of Salmonella occurs by contact with the host's cell surface and is mediated by the type III secretion system (T3SS) that promotes the contact-dependent translocation of effector proteins directly into host's cell cytoplasm. Here we provide evidence of distant sequence similarities and structurally conserved domains between T. cruzi and Salmonella spp T3SS proteins. Exhaustive database searches were directed to a wide range of intracellular bacteria and trypanosomatids, exploring sequence patterns for comparison of structural similarities and Bayesian phylogenies. Based on our data we hypothesize that T. cruzi acquired genes for calcium mobilization mediated invasion by ancient HGT from ancestral Salmonella lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA