Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Plant J ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348485

RESUMO

Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage. Results demonstrated that the BE had lower levels of gene transcripts and enzymes facilitating starch synthesis, corresponding to incomplete starch storage at maturity, compared with AE and ME. Contrarily, the BE showed abundant gene expression for genetic processing and slow progress in physiological development (quantified by an index calculated from the expression values of development progress marker genes), revealing a sustained cell vitality of the BE. Further analysis demonstrated a significant parabolic correlation between starch synthesis and physiological development. An in-depth examination showed that the BE had more active signaling pathways of IAA and ABA than the AE throughout the filling stage, while ethylene showed the opposite pattern. Besides, SNF1-related protein kinase1 (SnRK1) activity, a regulator for starch synthesis modulated by trehalose-6-phosphate (T6P) signaling, was kept at a lower level in the BE than the AE and ME, corresponding to the distinct gene expression in the T6P pathway in starch synthesis regulation. Collectively, the findings support an improved understanding of the timing of starch synthesis and cell vitality in regions of the endosperm during development, and potential regulation from hormone signaling and T6P/SnRK1 signaling.

2.
Biosensors (Basel) ; 14(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39194607

RESUMO

Plants have evolved intricate signaling pathways, which operate as networks governed by feedback to deal with stressors. Nevertheless, the sophisticated molecular mechanisms underlying these routes still need to be comprehended, and experimental validation poses significant challenges and expenses. Consequently, computational hypothesis evaluation gains prominence in understanding plant signaling dynamics. Biosensors are genetically modified to emit light when exposed to a particular hormone, such as abscisic acid (ABA), enabling quantification. We developed computational models to simulate the relationship between ABA concentrations and bioluminescent sensors utilizing the Hill equation and ordinary differential equations (ODEs), aiding better hypothesis development regarding plant signaling. Based on simulation results, the luminescence intensity was recorded for a concentration of 47.646 RLUs for 1.5 µmol, given the specified parameters and model assumptions. This method enhances our understanding of plant signaling pathways at the cellular level, offering significant benefits to the scientific community in a cost-effective manner. The alignment of these computational predictions with experimental results emphasizes the robustness of our approach, providing a cost-effective means to validate mathematical models empirically. The research intended to correlate the bioluminescence of biosensors with plant signaling and its mathematical models for quantified detection of specific plant hormone ABA.


Assuntos
Ácido Abscísico , Técnicas Biossensoriais , Modelos Teóricos , Transdução de Sinais , Ácido Abscísico/metabolismo , Luminescência , Plantas/metabolismo , Medições Luminescentes , Reguladores de Crescimento de Plantas/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000471

RESUMO

Thyroid Hormones (THs) play a central role in the development, cell growth, differentiation, and metabolic homeostasis of neurosensory systems, including the retina. The coordinated activity of various components of TH signaling, such as TH receptors (THRs) and the TH processing enzymes deiodinases 2 and 3 (DIO2, DIO3), is required for proper retinal maturation and function of the adult photoreceptors, Müller glial cells, and pigmented epithelial cells. Alterations of TH homeostasis, as observed both in frank or subclinical thyroid disorders, have been associated with sight-threatening diseases leading to irreversible vision loss i.e., diabetic retinopathy (DR), and age-related macular degeneration (AMD). Although observational studies do not allow causal inference, emerging data from preclinical models suggest a possible correlation between TH signaling imbalance and the development of retina disease. In this review, we analyze the most important features of TH signaling relevant to retinal development and function and its possible implication in DR and AMD etiology. A better understanding of TH pathways in these pathological settings might help identify novel targets and therapeutic strategies for the prevention and management of retinal disease.


Assuntos
Retinopatia Diabética , Degeneração Macular , Retina , Transdução de Sinais , Hormônios Tireóideos , Humanos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Hormônios Tireóideos/metabolismo , Retina/metabolismo , Retina/patologia , Animais
4.
Pest Manag Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865711

RESUMO

BACKGROUND: Pyriproxyfen is an insect growth regulator (IGR) that is effective against various types of insect pests. However, the molecular mechanism underlying pyriproxyfen effects on insect reproduction remains unclear. Thus, in this study, we attempted to uncover the mechanisms underlying the impact of pyriproxyfen on the reproductive system of the model organism Drosophila melanogaster. RESULTS: A significant decrease in Drosophila reproduction was observed after pyriproxyfen treatment. The juvenile hormone (JH) titer was significantly increased (120.4%) in the ovary samples of pyriproxyfen-treated flies. Likewise, the concentrations of key enzymes and the expression of key genes related to the JH signaling pathway were also increased in the pyriproxyfen-treated group compared with the control group. Furthermore, pyriproxyfen treatment significantly increased (15.6%) the number of germline stem cells (GSCs) and significantly decreased (17%) the number of cystoblasts (CBs). However, no significant differences were observed in the number of somatic cells. We performed RNA interference (RNAi) on five key genes (Met, Tai, gce, ftz-f1, and hairy) related to the JH signaling pathway in germ cells using the germ cell-specific Gal4 driver. Interestingly, RNAi of the selected genes significantly decreased the number of both GSCs and CBs in pyriproxyfen-treated transgenic flies. These results further validate that pyriproxyfen enhances GSC proliferation by up-regulating JH signaling. CONCLUSION: Our results indicate that pyriproxyfen significantly decreases reproduction by affecting germ cells in female adult ovaries. The effect of pyriproxyfen on germ cell proliferation and differentiation is mediated by an increase in JH signaling. This study has significant implications for optimizing pest control strategies, developing sustainable agriculture practices, and understanding the mechanism of insecticide action. © 2024 Society of Chemical Industry.

5.
3 Biotech ; 14(7): 174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38855147

RESUMO

Due to the medicinal importance of the flowers of Xianglei type (XL) Lonicera macranthoides, it is important to understand the molecular mechanisms that underlie their development. In this study, we elucidated the transcriptomic and metabolomic mechanisms that underlie the flower development mechanism of two L. macranthoides varieties. In this study, 3435 common differentially expressed unigenes (DEGs) and 1138 metabolites were identified. These common DEGs were mainly enriched in plant hormone signal transduction pathways. Metabolomic analysis showed that amino acids were the main metabolites of differential accumulation in wild-type (WT) L. macranthoides, whereas in XL, they were flavonoids and phenylalanine metabolites. Genes and transcription factors (TFs), such as MYB340, histone deacetylase 1 (HDT1), small auxin-up RNA 32 (SAUR32), auxin response factor 6 (ARF6), PIN-LIKES 7 (PILS7), and WRKY6, likely drive metabolite accumulation. Plant hormone signals, especially auxin signals, and various TFs induce downstream flower organ recognition genes, resulting in a differentiation of the two L. macranthoides varieties in terms of their developmental trajectories. In addition, photoperiodic, autonomous, and plant hormone pathways jointly regulated the L. macranthoides corolla opening. SAUR32, Arabidopsis response regulator 9 (ARR9), Gibberellin receptor (GID1B), and Constans-like 10 (COL10) were closely related to the unfolding of the L. macranthoides corolla. These findings offer valuable understanding of the flower growth process of L. macranthoides and the excellent XL phenotypes at the molecular level. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04019-1.

6.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889231

RESUMO

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.


Assuntos
Camundongos Knockout , Fenótipo , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Animais , Feminino , Masculino , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Camundongos , Transdução de Sinais/genética , Hormônios Tireóideos/metabolismo , Camundongos Endogâmicos C57BL
7.
Mol Breed ; 44(6): 38, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766511

RESUMO

Cotton fibers are specialized single-cell trichomes derived from epidermal cells, similar to root hairs and trichomes in Arabidopsis. While the MYB-bHLH-WD40 (MBW) complex has been shown to regulate initiation of both root hairs and trichomes in Arabidopsis, the role of their homologous gene in cotton fiber initiation remains unknown. In this study, we identified a R2R3 MYB transcription factor (TF), GhWER, which exhibited a significant increase in expression within the outer integument of ovule at -1.5 DPA (days post anthesis). Its expression peaked at -1 DPA and then gradually decreased. Knockout of GhWER using CRISPR technology inhibited the initiation and early elongation of fiber initials, resulting in the shorter mature fiber length. Additionally, GhWER interacted with two bHLH TF, GhDEL65 and GhbHLH121, suggesting a potential regulatory complex for fiber development. RNA-seq analysis of the outer integument of the ovule at -1.5 DPA revealed that the signal transduction pathways of ethylene, auxin and gibberellin were affected in the GhWER knockout lines. Further examination demonstrated that GhWER directly activated ethylene signaling genes, including ACS1 and ETR2. These findings highlighted the biological function of GhWER in regulating cotton fiber initiation and early elongation, which has practical significance for improving fiber quality and yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01477-6.

8.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802731

RESUMO

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Imunidade Vegetal/genética , Estudo de Associação Genômica Ampla , Genes de Plantas , Genoma de Planta , Filogenia
9.
Environ Int ; 188: 108747, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761427

RESUMO

Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.


Assuntos
Disruptores Endócrinos , Larva , Cristais Líquidos , Hormônios Tireóideos , Peixe-Zebra , Animais , Cristais Líquidos/química , Hormônios Tireóideos/metabolismo , Larva/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular
10.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696472

RESUMO

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Marchantia , Complexo Mediador , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Marchantia/genética , Marchantia/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Sci Rep ; 14(1): 10981, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745099

RESUMO

Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Salino , Tolerância ao Sal , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino/genética , Transcriptoma , Salinidade , Ontologia Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647720

RESUMO

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genética
13.
J Hazard Mater ; 471: 134240, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678700

RESUMO

Surface and treated wastewater are contaminated with highly complex mixtures of micropollutants, which may cause numerous adverse effects, often mediated by endocrine disruption. However, there is limited knowledge regarding some important modes of action, such as interference with thyroid hormone (TH) regulation, and the compounds driving these effects. This study describes an effective approach for the identification of compounds with the potential to bind to transthyretin (TTR; protein distributing TH to target tissues), based on their specific separation in a pull-down assay followed by non-target analysis (NTA). The method was optimized with known TTR ligands and applied to complex water samples. The specific separation of TTR ligands provided a substantial reduction of chromatographic features from the original samples. The applied NTA workflow resulted in the identification of 34 structures. Twelve compounds with available standards were quantified in the original extracts and their TH-displacement potency was confirmed. Eleven compounds were discovered as TTR binders for the first time and linear alkylbenzene sulfonates (LAS) were highlighted as contaminants of concern. Pull-down assay combined with NTA proved to be a well-functioning approach for the identification of unknown bioactive compounds in complex mixtures with great application potential across various biological targets and environmental compartments.


Assuntos
Disruptores Endócrinos , Pré-Albumina , Poluentes Químicos da Água , Pré-Albumina/química , Pré-Albumina/metabolismo , Pré-Albumina/análise , Disruptores Endócrinos/química , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Ligantes , Espectrometria de Massas/métodos , Águas Residuárias/química
14.
Physiol Mol Biol Plants ; 30(1): 17-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435854

RESUMO

The GhNAC2 transcription factor identified from G. herbaceum improves root growth and drought tolerance through transcriptional reprogramming of phytohormone signaling. The promoter of such a versatile gene could serve as an important genetic engineering tool for biotechnological application. In this study, we identified and characterized the promoter of GhNAC2 to understand its regulatory mechanism. GhNAC2 transcription factor increased in root tissues in response to GA, ethylene, auxin, ABA, mannitol, and NaCl. In silico analysis revealed an overrepresentation of cis-regulatory elements associated with hormone signaling, stress responses and root-, pollen-, and seed-specific promoter activity. To validate their role in GhNAC2 function/regulation, an 870-bp upstream regulatory sequence was fused with the GUS reporter gene (uidA) and expressed in Arabidopsis and cotton hairy roots for in planta characterization. Histochemical GUS staining indicated localized expression in root tips, root elongation zone, root primordia, and reproductive tissues under optimal growth conditions. Mannitol, NaCl, auxin, GA, and ABA, induced the promoter-driven GUS expression in all tissues while ethylene suppressed the promoter activity. The results show that the 870 nt fragment of the GhNAC2 promoter drives root-preferential expression and responds to phytohormonal and stress signals. In corroboration with promoter regulation, GA and ethylene pathways differentially regulated root growth in GhNAC2-expressing Arabidopsis. The findings suggest that differential promoter activity governs the expression of GhNAC2 in root growth and stress-related functions independently through specific promoter elements. This multifarious promoter can be utilized to develop yield and climate resilience in cotton by expanding the options to control gene regulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01411-2.

15.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473207

RESUMO

Estrogen receptor alpha (ER)-positive breast cancer is responsible for over 60% of breast cancer cases in the U.S. Among patients diagnosed with early-stage ER+ disease, 1/3 will experience recurrence despite treatment with adjuvant endocrine therapy. ER is a nuclear hormone receptor responsible for estrogen-driven tumor growth. ER transcriptional activity is modulated by interactions with coregulators. Dysregulation of the levels of these coregulators is involved in the development of endocrine resistance. To identify ER interactors that modulate transcriptional activity in breast cancer, we utilized biotin ligase proximity profiling of ER interactomes. Mass spectrometry analysis revealed tripartite motif containing 33 (TRIM33) as an estrogen-dependent interactor of ER. shRNA knockdown showed that TRIM33 promoted ER transcriptional activity and estrogen-induced cell growth. Despite its known role as an E3 ubiquitin ligase, TRIM33 increased the stability of endogenous ER in breast cancer cells. TRIM33 offers a novel target for inhibiting estrogen-induced cancer cell growth, particularly in cases of endocrine resistance driven by ER (ESR1) gene amplification or overexpression.

17.
Plants (Basel) ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337970

RESUMO

Tree peony (Paeonia suffruticosa Andr.) is a traditional Chinese flower with significant ornamental and medicinal value. Its growth and development process is regulated by some internal and external factors, and the related regulatory mechanism is largely unknown. Myelocytomatosis transcription factors (MYCs) play significant roles in various processes such as plant growth and development, the phytohormone response, and the stress response. As the identification and understanding of the MYC family in tree peony remains limited, this study aimed to address this gap by identifying a total of 15 PsMYCs in tree peony and categorizing them into six subgroups based on bioinformatics methods. Furthermore, the gene structure, conservative domains, cis-elements, and expression patterns of the PsMYCs were thoroughly analyzed to provide a comprehensive overview of their characteristics. An analysis in terms of gene structure and conserved motif composition suggested that each subtribe had similarities in function. An analysis of the promoter sequence revealed the presence of numerous cis-elements associated with plant growth and development, the hormone response, and the stress response. qRT-PCR results and the protein interaction network further demonstrated the potential functions of PsMYCs in the growth and development process. While in comparison to the control, only PsMYC2 exhibited a statistically significant variation in expression levels in response to exogenous hormone treatments and abiotic stress. A promoter activity analysis of PsMYC2 revealed its sensitivity to Flu and high temperatures, but exhibited no discernible difference under exogenous GA treatment. These findings help establish a basis for comprehending the molecular mechanism by which PsMYCs regulate the growth and development of tree peony.

18.
Plant Cell Rep ; 43(3): 62, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336832

RESUMO

KEY MESSAGE: Yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells leads to the biosynthesis of various hormones, which activates specific signaling pathways that augments biphenyl phytoalexin production. Pathogen incursions pose a significant threat to crop yield and can have a pronounced effect on agricultural productivity and food security. Biphenyl phytoalexins are a specialized group of secondary metabolites that are mainly biosynthesized by Pyrinae plants as a defense mechanism against various pathogens. Despite previous research demonstrating that biphenyl phytoalexin production increased dramatically in Sorbus aucuparia suspension cells (SASCs) treated with yeast extract (YE), the underlying mechanisms remain poorly understood. To address this gap, we conducted an in-depth, multi-omics analysis of transcriptome, proteome, and metabolite (including biphenyl phytoalexins and phytohormones) dynamics in SASCs exposed to YE. Our results indicated that exposure to YE-induced oxidative stress in SASCs, leading to the biosynthesis of a range of hormones, including jasmonic acid (JA), jasmonic acid isoleucine (JA-ILE), gibberellin A4 (GA4), indole-3-carboxylic acid (ICA), and indole-3-acetic acid (IAA). These hormones activated specific signaling pathways that promoted phenylpropanoid biosynthesis and augmented biphenyl phytoalexin production. Moreover, reactive oxygen species (ROS) generated during this process also acted as signaling molecules, amplifying the phenylpropanoid biosynthesis cascade through activation of the mitogen-activated protein kinase (MAPK) pathway. Key genes involved in these signaling pathways included SaBIS1, SaBIS2, SaBIS3, SaPAL, SaB4H, SaOMT, SaUGT1, SaLOX2, SaPR1, SaCHIB1, SaCHIB2 and SaCHIB3. Collectively, this study provided intensive insights into biphenyl phytoalexin accumulation in YE-treated SASCs, which would inform the development of more efficient disease-resistance strategies in economically significant cultivars.


Assuntos
Compostos de Bifenilo , Ciclopentanos , Oxilipinas , Sesquiterpenos , Sorbus , Fitoalexinas , Sorbus/genética , Sorbus/metabolismo , Multiômica , Estresse Oxidativo , Hormônios/metabolismo , Sesquiterpenos/metabolismo
19.
J Agric Food Chem ; 72(8): 4476-4492, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373255

RESUMO

Sugarcane smut, caused by Sporisorium scitamineum, poses a severe threat to sugarcane production. The genetic basis of sugarcane resistance to S. scitamineum remains elusive. A comparative transcriptomic and metabolomic study was conducted on two wild Saccharum species of S. spontaneum with contrast smut resistance. Following infection, the resistant line exhibited greater down-regulation of genes and metabolites compared to the susceptible line, indicating distinct biological processes. Lignan and lignin biosynthesis and SA signal transduction were activated in the resistant line, while flavonoid biosynthesis and auxin signal transduction were enhanced in the susceptible line. TGA2.2 and ARF14 were identified as playing positive and negative roles, respectively, in plant defense. Exogenous auxin application significantly increased the susceptibility of S. spontaneum to S. scitaminum. This study established the significant switching of defense signaling pathways in contrast-resistant S. spontaneum following S. scitamineum infection, offering a hypothetical model and candidate genes for further research into sugarcane smut disease.


Assuntos
Basidiomycota , Saccharum , Ustilaginales , Saccharum/genética , Saccharum/metabolismo , Basidiomycota/genética , Perfilação da Expressão Gênica , Ustilaginales/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
20.
Annu Rev Plant Biol ; 75(1): 211-237, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38277699

RESUMO

Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.


Assuntos
Complexo Mediador , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Complexo Mediador/química , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Plantas/enzimologia , Fosforilação , Iniciação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA