Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
1.
Mol Biotechnol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951481

RESUMO

The morbidity of oral squamous cell carcinoma (OSCC) has been rising year after year, making it a major global health issue. But the molecular pathogenesis of OSCC is currently unclear. To study the potential pathogenesis of OSCC, the differentially expressed genes (DEGs) were screened, and multiple databases were used to perform the tumor stage, expression, prognosis, protein-protein interaction (PPI) networks, modules, and the functional enrichment analysis. Moreover, we have identified SP110 as the key candidate gene and conducted various analyses on it using multiple databases. The research indicated that there were 211 common DEGs, and they were enriched in various GO terms and pathways. Meanwhile, one DEG is significantly related to short disease-free survival, four are associated with overall survival, and 12 DEGs have close ties with tumor staging. Additionally, the SP110 is significantly associated with methylation level, HPV status, tumor staging, gender, race, tumor grade, age, and overall/disease-free survival of oral cancer patients, as well as the immune process. The copy number variation of SP110 significantly affected the abundance of immune infiltration. Therefore, we speculate that SP110 could be used as the diagnostic and therapeutic biomarker for OSCC, and can help to further understand oral carcinogenesis.

2.
Front Med (Lausanne) ; 11: 1380210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962732

RESUMO

Sarcopenia, a geriatric syndrome characterized by progressive loss of muscle mass and strength, and osteoarthritis, a common degenerative joint disease, are both prevalent in elderly individuals. However, the relationship and molecular mechanisms underlying these two diseases have not been fully elucidated. In this study, we screened microarray data from the Gene Expression Omnibus to identify associations between sarcopenia and osteoarthritis. We employed multiple statistical methods and bioinformatics tools to analyze the shared DEGs (differentially expressed genes). Additionally, we identified 8 hub genes through functional enrichment analysis, protein-protein interaction analysis, transcription factor-gene interaction network analysis, and TF-miRNA coregulatory network analysis. We also discovered potential shared pathways between the two diseases, such as transcriptional misregulation in cancer, the FOXO signalling pathway, and endometrial cancer. Furthermore, based on common DEGs, we found that strophanthidin may be an optimal drug for treating sarcopenia and osteoarthritis, as indicated by the Drug Signatures database. Immune infiltration analysis was also performed on the sarcopenia and osteoarthritis datasets. Finally, receiver operating characteristic (ROC) curves were plotted to verify the reliability of our results. Our findings provide a theoretical foundation for future research on the potential common pathogenesis and molecular mechanisms of sarcopenia and osteoarthritis.

3.
Front Immunol ; 15: 1397475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979407

RESUMO

Monocytes are pivotal immune cells in eliciting specific immune responses and can exert a significant impact on the progression, prognosis, and immunotherapy of intracranial aneurysms (IAs). The objective of this study was to identify monocyte/macrophage (Mo/MΦ)-associated gene signatures to elucidate their correlation with the pathogenesis and immune microenvironment of IAs, thereby offering potential avenues for targeted therapy against IAs. Single-cell RNA-sequencing (scRNA-seq) data of IAs were acquired from the Gene Expression Synthesis (GEO) database. The significant infiltration of monocyte subsets in the parietal tissue of IAs was identified using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis (hdWGCNA). The integration of six machine learning algorithms identified four crucial genes linked to these Mo/MΦ. Subsequently, we developed a multilayer perceptron (MLP) neural model for the diagnosis of IAs (independent external test AUC=1.0, sensitivity =100%, specificity =100%). Furthermore, we employed the CIBERSORT method and MCP counter to establish the correlation between monocyte characteristics and immune cell infiltration as well as patient heterogeneity. Our findings offer valuable insights into the molecular characterization of monocyte infiltration in IAs, which plays a pivotal role in shaping the immune microenvironment of IAs. Recognizing this characterization is crucial for comprehending the limitations associated with targeted therapies for IAs. Ultimately, the results were verified by real-time fluorescence quantitative PCR and Immunohistochemistry.


Assuntos
Aneurisma Intracraniano , Aprendizado de Máquina , Macrófagos , Monócitos , Análise de Célula Única , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/imunologia , Análise de Célula Única/métodos , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Celular/imunologia , Microambiente Celular/genética , Masculino , Feminino , Redes Reguladoras de Genes , Biologia Computacional/métodos
4.
Chin Clin Oncol ; 13(3): 32, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38984486

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally. To reduce HCC-related mortality, early diagnosis and therapeutic improvement are essential. Hub differentially expressed genes (HubGs) may serve as potential diagnostic and prognostic biomarkers, also offering therapeutic targets for precise therapies. Therefore, we aimed to identify top-ranked hub genes for the diagnosis, prognosis, and therapy of HCC. METHODS: Through a systematic literature review, 202 HCC-related HubGs were derived from 59 studies, yet consistent detection across these was lacking. Then, we identified top-ranked HubGs (tHubGs) by integrated bioinformatics analysis, highlighting their functions, pathways, and regulators that might be more representative of the diagnosis, prognosis, and therapies of HCC. RESULTS: In this study, eight HubGs (CDK1, AURKA, CDC20, CCNB2, TOP2A, PLK1, BUB1B, and BIRC5) were identified as the tHubGs through the protein-protein interaction (PPI) network and survival analysis. Their differential expression in different stages of HCC, validated using The Cancer Genome Atlas (TCGA) Program database, suggests their potential as early HCC markers. The enrichment analyses revealed some important roles in HCC-related biological processes (BPs), molecular functions (MFs), cellular components (CCs), and signaling pathways. Moreover, the gene regulatory network analysis highlighted key transcription factors (TFs) and microRNAs (miRNAs) that regulate these tHubGs at transcriptional and post-transcriptional. Finally, we selected three drugs (CD437, avrainvillamide, and LRRK2-IN-1) as candidate drugs for HCC treatment as they showed strong binding with all of our proposed and published protein receptors. CONCLUSIONS: The findings of this study may provide valuable resources for early diagnosis, prognosis, and therapies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , Mapas de Interação de Proteínas , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
5.
Biomed Res Int ; 2024: 5058607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045407

RESUMO

Psoriasis increases the risk of developing various cancers, including colon cancer. The pathogenesis of the co-occurrence of psoriasis and cancer is not yet clear. This study is aimed at analyzing the pathogenesis of psoriasis combined with cancer by bioinformatic analysis. Skin tissue data from psoriasis (GSE117239) and intestinal tissue data from colon cancer (GSE44076) were downloaded from the GEO database. One thousand two hundred ninety-six common differentially expressed genes and 688 common shared genes for psoriasis and colon cancer were determined, respectively, using the limma R package and weighted gene coexpression network analysis (WGCNA) methods. The results of the GO and KEGG enrichment analyses were mainly related to the biological processes of the cell cycle. Thirteen hub genes were selected, including AURKA, DLGAP5, NCAPG, CCNB1, NDC80, BUB1B, TTK, CCNB2, AURKB, TOP2A, ASPM, BUB1, and KIF20A. These hub genes have high diagnostic value, and most of them are positively correlated with activated CD4 T cells. Three hub transcription factors (TFs) were also predicted: E2F1, E2F3, and BRCA1. These hub genes and hub TFs are highly expressed in various cancers. Furthermore, 251 drugs were predicted, and some of them overlap with existing therapeutic drugs for psoriasis or colon cancer. This study revealed some genetic mechanisms of psoriasis and cancer by bioinformatic analysis. These hub genes, hub TFs, and predicted drugs may provide new perspectives for further research on the mechanism and treatment.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Psoríase , Humanos , Psoríase/genética , Biologia Computacional/métodos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F1/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Proteína BRCA1/genética
6.
J Inflamm Res ; 17: 4467-4482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006497

RESUMO

Background: Ulcerative colitis (UC) is a long-lasting idiopathic condition, but its precise mechanisms remain unclear. Meanwhile, evidence has demonstrated that ferroptosis seems to interlock with the progress of UC. This research sought to identify hub genes of UC related to ferroptosis. Methods: First, the relevant profiles for this article were obtained from GEO database. From the FerrDb, 479 genes linked to ferroptosis were retrieved. Using analysis of the difference and WGCNA on colonic samples from GSE73661, the remaining six hub genes linked to ferroptosis and UC were discovered. Through logistic regression analyses, the diagnostic model was constructed and was then evaluated by external validation using dataset GSE92415. Afterwards, the correlation between immune cell filtration in UC and hub genes was examined. Finally, a mice model of colitis was established, and the results were verified using qRT-PCR. Results: We acquired six hub genes linked to ferroptosis and UC. In order to create a diagnostic model for UC, we used logistic regression analysis to screen three of the six ferroptosis related genes (HIF1A, SLC7A11, and LPIN1). The ROC curve showed that the three hub genes had outstanding potential for disease diagnosis (AUC = 0.976), which was subsequently validated in samples from GSE92415 (AUC = 0.962) and blood samples from GSE3365 (AUC = 0.847) and GSE94648 (AUC = 0.769). These genes might be crucial for UC immunity based upon the results on the immune system. Furthermore, mouse samples examined using qRT-PCR also verified our findings. Conclusion: In conclusion, the findings have important implications for ferroptosis and UC, and these hub genes may also offer fresh perspectives on the aetiology and therapeutic approaches of UC.

7.
Sci Rep ; 14(1): 16471, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014096

RESUMO

Psoriasis, a chronic inflammatory skin disorder, is associated with comorbidities such as acute myocardial infarction (AMI). However, the molecular mechanisms connecting these conditions are unclear. In this study, we conducted bioinformatics analyses using gene expression datasets to identify differentially expressed genes and hub genes associated with both psoriasis and AMI. Our findings emphasize the involvement of immune-related pathways in the pathogenesis of both conditions. Furthermore, we investigated the expression levels of hub genes in AMI patients and myocardial infarction (MI) mice. ELISA measurements revealed significantly higher levels of CXCL8, IL1B, S100A9, and S100A12 in the serum of AMI patients compared to normal individuals. Immunohistochemical staining of heart tissue from MI mice showed a progressive increase in the expression of CXCL8 and IL-1B as MI advanced, while S100A9 exhibited high expression at day 3 post-MI. mRNA expression analysis validated these findings. Additionally, we explored the skin lesions of psoriasis patients and found significantly higher expression of CXCL8, IL-1B, S100A9, and S100A12 in the affected skin areas compared to unaffected regions. These results highlight the consistent upregulation of hub genes in both AMI and psoriasis patients, as well as in myocardial infarction mice, underscoring their potential as reliable markers for disease diagnosis. Moreover, molecular docking simulations revealed potential interactions between simvastatin and key target proteins, suggesting a potential therapeutic avenue. Overall, our study uncovers shared molecular signatures and potential therapeutic targets, providing a foundation for future investigations targeting common pathways in psoriasis and AMI.


Assuntos
Calgranulina B , Infarto do Miocárdio , Psoríase , Psoríase/genética , Psoríase/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Animais , Humanos , Camundongos , Calgranulina B/genética , Calgranulina B/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Simulação de Acoplamento Molecular , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Proteína S100A12/genética , Proteína S100A12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Masculino , Modelos Animais de Doenças , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Feminino , Biomarcadores
8.
J Transl Med ; 22(1): 668, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026250

RESUMO

BACKGROUND: The heightened risk of cardiovascular and cerebrovascular events is associated with the increased instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection and treatment of this condition. METHODS: Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the association between hub genes and immune cells, as well as their colocalization with mitochondria. RESULTS: The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. However, among the three key genes mentioned above, only KMO showed a significant increase in expression in unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque stability in ApoE-/- mice. CONCLUSIONS: The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Genes Mitocondriais/genética , Redes Reguladoras de Genes , Masculino , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Feminino , Biologia Computacional/métodos , Pessoa de Meia-Idade , Macrófagos/metabolismo , Macrófagos/patologia , Mitocôndrias/metabolismo
9.
Heliyon ; 10(12): e32966, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984304

RESUMO

Background: Endothelial dysfunction is the early stage of carotid atherosclerosis (CAS) in patients with hypertension. It is worth identifying the potential hub genes of endothelial dysfunction to elucidate pathological mechanism in the progression of the disease. Method: We obtained gene expression profiles of GSE43292 from the Gene Expression Omnibus (GEO) database. Hub genes associated with CAS were identified through weighted gene correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore potential biological mechanisms and signaling pathways. Finally, in vitro experiments on human umbilical vein endothelial cells (HUVECs) were conducted to validate these hub genes. Results: The microarray dataset GSE43292 included 32 CAS plaques samples and corresponding macroscopically intact tissues from patients with hypertension. A total of 161 differentially expressed genes were discovered. Through WGCNA analysis, the gray60 module emerged as the most significant module associated with clinical features. The GO and KEGG enrichment analyses of genes in the gray60 module highlighted the substantial involvement of immune response-related signaling pathways. Two key hub genes (CCR1 and NCKAP1L) were pinpointed via LASSO regression. We found a significant increase in the mRNA expression level of the hub genes in oxidized low density lipoprotein (ox-LDL) treated HUVECs. Conclusions: Our study indicated that the hub genes related to immune responses are involved in the development of CAS. Two hub genes (CCR1 and NCKAP1L) of endothelial dysfunction were identified. These genes may provide a valuable therapeutic target of CAS in patients with hypertension.

10.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961324

RESUMO

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Assuntos
Anopheles , Resistência a Inseticidas , Piretrinas , Biologia de Sistemas , Anopheles/genética , Anopheles/efeitos dos fármacos , Animais , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Inseticidas/farmacologia , Redes Reguladoras de Genes , Organofosfatos/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Quênia , Perfilação da Expressão Gênica
11.
J Orthop Translat ; 47: 50-62, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007035

RESUMO

Background: The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA. Materials and methods: We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-ß-gal staining, HE, IHC, von frey test, and hot plate. Results: 1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1ß-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1ß-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice. Conclusion: This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA. The translational potential of this article: The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.

12.
Front Genet ; 15: 1385559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011399

RESUMO

Background: Obesity and gastric cancer (GC) are prevalent diseases worldwide. In particular, the number of patients with obesity is increasing annually, while the incidence and mortality rates of GC are ranked high. Consequently, these conditions seriously affect the quality of life of individuals. While evidence suggests a strong association between these two conditions, the underlying mechanisms of this comorbidity remain unclear. Methods: We obtained the gene expression profiles of GSE94752 and GSE54129 from the Gene Expression Omnibus database. To investigate the associated biological processes, pathway enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for the shared differentially expressed genes in obesity and GC. A protein-protein interaction (PPI) network was subsequently established based on the Search Tool for the Retrieval of Interacting Genes (STRING) database, followed by the screening of the core modules and central genes in this network using Cytoscape plug-in MCODE. Furthermore, we scrutinized the co-expression network and the interplay network of transcription factors (TFs), miRNAs, and mRNAs linked to these central genes. Finally, we conducted further analyses using different datasets to validate the significance of the hub genes. Results: A total of 246 shared differentially expressed genes (209 upregulated and 37 downregulated) were selected for ensuing analyses. Functional analysis emphasized the pivotal role of inflammation and immune-associated pathways in these two diseases. Using the Cytoscape plug-in CytoHubba, nine hub genes were identified, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, CD4, and CCL2. IL6 and CCL4 were confirmed as the final hub genes through validation using different datasets. The TF-miRNA-mRNA regulatory network showed that the TFs primarily associated with the hub genes included RELA and NFKB1, while the predominantly associated miRNAs included has-miR-195-5p and has-miR-106a-5p. Conclusion: Using bioinformatics methods, we identified two hub genes from the Gene Expression Omnibus datasets for obesity and GC. In addition, we constructed a network of hub genes, TFs, and miRNAs, and identified the major related TFs and miRNAs. These factors may be involved in the common molecular mechanisms of obesity and GC.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38902567

RESUMO

PURPOSE: The objective of this study was to discern ferroptosis-related genes (FRGs) linked to non-obstructive azoospermia and investigate the associated molecular mechanisms. METHOD: A dataset related to azoospermia was retrieved from the Gene Expression Omnibus database, and FRGs were sourced from GeneCards. Ferroptosis-related differentially expressed genes (FRDEGs) were discerned. Subsequently, these genes underwent analyses encompassing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, as well as protein-protein interaction (PPI) networks and assessments of functional similarity. Following the identification of hub genes, an exploration of immune infiltration, single-cell expression, diagnostic utility, and interactions involving hub genes, RNA-binding proteins (RBPs), transcription factors (TFs), microRNAs (miRNAs), and drugs was conducted. RESULTS: A total of 35 differentially expressed FRGs were discerned. These genes demonstrated enrichment in functions and pathways associated with ferroptosis. From the PPI network, eight hub genes were selected. Functional similarity analysis highlighted the potential pivotal roles of HMOX1 and GPX4 in azoospermia. Analysis of immune cell infiltration indicated a significant decrease in activated dendritic cells in the azoospermia group, with notable correlations between hub genes, particularly SAT1 and HMGCR, and immune cell infiltration. Unique expression patterns of hub genes across various cell types in the human testis were observed, with GPX4 prominently enriched in spermatid/sperm. Eight hub genes exhibited robust diagnostic value (AUC > 0.75). Lastly, a comprehensive hub gene-miRNA-TF-RBP-drug network was constructed. CONCLUSION: In summary, our investigation unveiled eight FRDEGs associated with azoospermia, which hold potential as biomarkers for the diagnosis and treatment of azoospermia.

14.
Autoimmunity ; 57(1): 2358069, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38869013

RESUMO

Rheumatoid arthritis (RA) is the predominant manifestation of inflammatory arthritis, distinguished by an increasing burden of morbidity and mortality. The intricate interplay of genes and signalling pathways involved in synovial inflammation in patients with RA remains inadequately comprehended. This study aimed to ascertain the role of necroptosis in RA, as along with their associations with immune cell infiltration. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify central genes for RA. In this study, identified total of 28 differentially expressed genes (DEGs) were identified in RA. Utilising WGCNA, two co-expression modules were generated, with one module demonstrating the strongest correlation with RA. Through the integration of differential gene expression analysis, a total of 5 intersecting genes were discovered. These 5 hub genes, namely fused in sarcoma (FUS), transformer 2 beta homolog (TRA2B), eukaryotic translation elongation factor 2 (EEF2), cleavage and polyadenylation specific factor 6 (CPSF6) and signal transducer and activator of transcription 3 (STAT3) were found to possess significant diagnostic value as determined by receiver operating characteristic (ROC) curve analysis. The close association between the concentrations of various immune cells is anticipated to contribute to the diagnosis and treatment of RA. Furthermore, the infiltration of immune cells mentioned earlier is likely to exert a substantial influence on the initiation of this disease.


Assuntos
Artrite Reumatoide , Redes Reguladoras de Genes , Necroptose , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Humanos , Necroptose/imunologia , Perfilação da Expressão Gênica , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica , Transdução de Sinais/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Biomarcadores , Curva ROC
15.
BMC Pulm Med ; 24(1): 275, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858671

RESUMO

BACKGROUND: Whether there are invasive components in pure ground glass nodules(pGGNs) in the lungs is still a huge challenge to forecast. The objective of our study is to investigate and identify the potential biomarker genes for pure ground glass nodule(pGGN) based on the method of bioinformatics analysis. METHODS: To investigate differentially expressed genes (DEGs), firstly the data obtained from the gene expression omnibus (GEO) database was used.Next Weighted gene co-expression network analysis (WGCNA) investigate the co-expression network of DEGs. The black key module was chosen as the key one in correlation with pGGN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were done. Then STRING was uesd to create a protein-protein interaction (PPI) network, and the chosen module genes were analyzed by Cytoscape software.In addition the polymerase chain reaction (PCR) was used to evaluate the value of these hub genes in pGGN patients' tumor tissues compared to controls. RESULTS: A total of 4475 DEGs were screened out from GSE193725, then 225 DEGs were identified in black key module, which were found to be enriched for various functions and pathways, such as extracellular exosome, vesicle, ribosome and so on. Among these DEGs, 6 overlapped hub genes with high degrees of stress method were selected. These hub genes include RPL4, RPL8, RPLP0, RPS16, RPS2 and CCT3.At last relative expression levels of CCT3 and RPL8 mRNA were both regulated in pGGN patients' tumor tissues compared to controls. CONCLUSIONS: To summarize, the determined DEGs, pathways, modules, and overlapped hub genes can throw light on the potential molecular mechanisms of pGGN.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Pulmonares , Mapas de Interação de Proteínas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Nódulo Pulmonar Solitário/genética , Ontologia Genética , Biomarcadores Tumorais/genética
16.
Ann Hum Biol ; 51(1): 2334719, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38863372

RESUMO

BACKGROUND: Mitophagy and ferroptosis occur in intracerebral haemorrhage (ICH) but our understanding of mitophagy and ferroptosis-related genes remains incomplete. AIM: This study aims to identify shared ICH genes for both processes. METHODS: ICH differentially expressed mitophagy and ferroptosis-related genes (DEMFRGs) were sourced from the GEO database and literature. Enrichment analysis elucidated functions. Hub genes were selected via STRING, MCODE, and MCC algorithms in Cytoscape. miRNAs targeting hubs were predicted using miRWalk 3.0, forming a miRNA-hub gene network. Immune microenvironment variances were assessed with MCP and TIMER. Potential small molecules for ICH were forecasted via CMap database. RESULTS: 64 DEMFRGs and ten hub genes potentially involved in various processes like ferroptosis, TNF signalling pathway, MAPK signalling pathway, and NF-kappa B signalling pathway were discovered. Several miRNAs were identified as shared targets of hub genes. The ICH group showed increased infiltration of monocytic lineage and myeloid dendritic cells compared to the Healthy group. Ten potential small molecule drugs (e.g. Zebularine, TWS-119, CG-930) were predicted via CMap. CONCLUSION: Several shared genes between mitophagy and ferroptosis potentially drive ICH progression via TNF, MAPK, and NF-kappa B pathways. These results offer valuable insights for further exploring the connection between mitophagy, ferroptosis, and ICH.


Assuntos
Hemorragia Cerebral , Biologia Computacional , Ferroptose , Mitofagia , Mitofagia/genética , Ferroptose/genética , Hemorragia Cerebral/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes
17.
J Pharm Bioallied Sci ; 16(Suppl 2): S1515-S1521, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882729

RESUMO

Periodontitis and oral squamous cell carcinoma (OSCC) are prevalent oral diseases with distinct etiologies, yet they share certain molecular and biological characteristics. Gene expression datasets from the gene expression omnibus (GEO) repository (GSE30784 for OSCC and GSE10334 for periodontitis) were analyzed. Data preprocessing and differential gene expression analysis using GEO2R identified common differentially expressed genes (DEGs), and FunRich software facilitated the construction of a protein-protein interaction (PPI) network on the STRING database. Cytoscape, coupled with the CytoHubba plugin, identified Cluster of Differentiation 19 (CD19) and Von Willebrand Factor (VWF) as the top hub genes, with Complement C3 (C3) also highly ranked. Functional enrichment analysis highlighted pathways such as the B-cell receptor signaling pathway, complement and coagulation cascades, and hematopoietic cell lineage. Additionally, miRNet analysis identified key miRNAs, including hsa-mir-26a-5p, hsa-mir-129-2-3p, and hsa-mir-27a-3p, associated with these pathways. These findings suggested an association of molecular mechanisms between periodontitis and OSCC, with identified hub genes and miRNAs potentially serving as therapeutic targets.

18.
BMC Musculoskelet Disord ; 25(1): 435, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831425

RESUMO

BACKGROUND: Prior studies have suggested a potential relationship between osteoporosis and sarcopenia, both of which can present symptoms of compromised mobility. Additionally, fractures among the elderly are often considered a common outcome of both conditions. There is a strong correlation between fractures in the elderly population, decreased muscle mass, weakened muscle strength, heightened risk of falls, and diminished bone density. This study aimed to pinpoint crucial diagnostic candidate genes for osteoporosis patients with concomitant sarcopenia. METHODS: Two osteoporosis datasets and one sarcopenia dataset were obtained from the Gene Expression Omnibus (GEO). Differential expression genes (DEGs) and module genes were identified using Limma and Weighted Gene Co-expression Network Analysis (WGCNA), followed by functional enrichment analysis, construction of protein-protein interaction (PPI) networks, and application of a machine learning algorithm (least absolute shrinkage and selection operator (LASSO) regression) to determine candidate hub genes for diagnosing osteoporosis combined with sarcopenia. Receiver operating characteristic (ROC) curves and column line plots were generated. RESULTS: The merged osteoporosis dataset comprised 2067 DEGs, with 424 module genes filtered in sarcopenia. The intersection of DEGs between osteoporosis and sarcopenia module genes consisted of 60 genes, primarily enriched in viral infection. Through construction of the PPI network, 30 node genes were filtered, and after machine learning, 7 candidate hub genes were selected for column line plot construction and diagnostic value assessment. Both the column line plots and all 7 candidate hub genes exhibited high diagnostic value (area under the curve ranging from 1.00 to 0.93). CONCLUSION: We identified 7 candidate hub genes (PDP1, ALS2CL, VLDLR, PLEKHA6, PPP1CB, MOSPD2, METTL9) and constructed column line plots for osteoporosis combined with sarcopenia. This study provides reference for potential peripheral blood diagnostic candidate genes for sarcopenia in osteoporosis patients.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Osteoporose , Sarcopenia , Humanos , Sarcopenia/genética , Sarcopenia/diagnóstico , Osteoporose/genética , Osteoporose/diagnóstico , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Idoso , Transcriptoma , Bases de Dados Genéticas , Feminino
19.
PeerJ ; 12: e17417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827307

RESUMO

Background: Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods: Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results: A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1ß were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion: Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.


Assuntos
Mapas de Interação de Proteínas , Humanos , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Masculino , Tíbia/patologia , Tíbia/imunologia , Tíbia/metabolismo , Regulação para Baixo , Feminino
20.
Cureus ; 16(5): e59863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854307

RESUMO

Introduction Oral cancer is a significant global health issue that is mainly caused by factors, such as smoking, alcohol consumption, poor oral hygiene, age, and the human papillomavirus. Unfortunately, delayed diagnosis contributes to high rates of illness and mortality. However, saliva shows promise as a potential source for early detection, prognosis, and treatment. By analyzing the proteins and their interactions in saliva, we can gain insights that can assist in early detection and prediction. In this study, we aim to identify and predict the key genes, known as hub genes, in the salivary transcriptomics data of oral cancer patients and healthy individuals. Methods The data used for the analysis were obtained from salivaryproteome.org (https://salivaryproteome.org/) . The retrieved data consisted of individuals with oral cancer who were assigned unique identification numbers (IDs) 1025, 1030, 1027, and 1029, while the healthy individuals were assigned IDs 4256, 4257, 4255, and 4258, respectively. Differential gene expression analysis was used to identify genes that showed significant differences between the two groups. Uniformity and clustering were assessed through heatmaps and principal component analysis. Protein-protein interactions were investigated using the STRING database and Cytoscape. In addition, machine learning algorithms were employed to identify key genes involved in the interatomic interactions by analyzing transcriptomics data generated from the differential gene expression analysis. Results The accuracy and class accuracy of the extra tree classifier showed 98% and 97% in predicting interactomic hub genes, and HSPB1 was identified as a hub gene using Cytohubba from Cytoscape. Conclusion The predictive extra tree classifier, with its high accuracy in analysing interactomic hub genes in oral cancer, can potentially improve diagnosis and treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...