Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Curr Res Food Sci ; 7: 100646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115892

RESUMO

Trifuhalol A, a fucol-type phlorotannin, was extracted and identified from the brown algae Agarum cribrosum. The total yield and purity of trifuhalol A from A. cribrosum were 0.98% and 86%, respectively. Trifuhalol A at 22 and 44 µM inhibited lipid accumulation in human primary adipocytes. Consistently trifuhalol A suppressed the expression of adipogenesis-related genes, such as proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein-alpha (C/EBP-α), fatty acid synthase (FAS), and sterol regulatory element-binding protein-1 (SREBP-1), in a dose-dependent manner. Trifuhalol A increased the level of proteins such as wingless/integrated (Wnt)10b, nuclear-ß-catenin, total-ß-catenin, phospho-AMP-activated protein kinase (pAMPK), and phospho-liver kinase B1 (pLKB1) as well as the expression of genes such as Wnt10b, Frizzled 1, and low-density lipoprotein receptor-related protein 6 (LRP6). Additionally, trifuhalol A decreased the expression of the glycogen synthase kinase-3beta (GSK3ß) gene. These results suggest that trifuhalol A reduces fat accumulation in human adipocytes via the Wnt/ß-catenin- and AMPK-dependent pathways.

3.
Toxicology ; 500: 153672, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956786

RESUMO

Human lifetime exposure to arsenic through drinking water, food supply or industrial pollution leads to its accumulation in many organs such as liver, kidneys, lungs or pancreas but also adipose tissue. Recently, population-based studies revealed the association between arsenic exposure and the development of metabolic diseases such as obesity and type 2 diabetes. To shed light on the molecular bases of such association, we determined the concentration that inhibited 17% of cell viability and investigated the effects of arsenic acute exposure on adipose-derived human mesenchymal stem cells differentiated in vitro into mature adipocytes and treated with sodium arsenite (NaAsO2, 10 nM to 10 µM). Untargeted metabolomics and gene expression analyses revealed a strong dose-dependent inhibition of lipogenesis and lipolysis induction, reducing the cellular ability to store lipids. These dysregulations were emphasized by the inhibition of the cellular response to insulin, as shown by the perturbation of several genes and metabolites involved in the mentioned biological pathways. Our study highlighted the activation of an adaptive oxidative stress response with the strong induction of metallothioneins and increased glutathione levels in response to arsenic accumulation that could exacerbate the decreased insulin sensitivity of the adipocytes. Arsenic exposure strongly affected the expression of arsenic transporters, responsible for arsenic influx and efflux, and induced a pro-inflammatory state in adipocytes by enhancing the expression of the inflammatory interleukin 6 (IL6). Collectively, our data showed that an acute exposure to low levels of arsenic concentrations alters key adipocyte functions, highlighting its contribution to the development of insulin resistance and the pathogenesis of metabolic disorders.


Assuntos
Arsênio , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Arsênio/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Insulina/metabolismo , Metaboloma
4.
Front Pharmacol ; 14: 1251035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936906

RESUMO

Introduction: The activation of the P2X7 receptor subtype (P2X7R) has a main role in orchestrating the cellular inflammatory response in many different tissues. Obesity is characterized by dysfunctional fat deposition leading to a tissue-specific and systemic low-grade inflammation. Androgens and estrogens contribute to the whole adipose tissue inflammatory state, but the involvement of sex steroids in the purinergic signaling modulation in adipocytes is still unknown. Methods: We performed an in vitro study to evaluate the possible role of sex hormones on the P2X7R gene expression in human adipocytes, at baseline and after stimulation with bacterial lipopolysaccharide (LPS). We evaluated P2X7R gene expression during in vitro differentiation of human adipocytes, in the absence and presence of testosterone (T) and 17ß-estradiol (E2) in the presence and absence of LPS. Furthermore, we analyzed the effects of incubation with dihydrotestosterone (DHT), a non-aromatizable androgen, using the co-incubation of isolated human adipocytes with T alone or in combination with anastrozole, an inhibitor of aromatase, the enzyme responsible of T conversion to E2. Results: At baseline, incubation of adipocytes with T or E2 did not significantly affect P2X7R gene expression. On the contrary, the incubation with DHT was associated with a significant reduction of P2X7R gene expression. LPS incubation significantly increased gene expression of P2X7R with respect to baseline. Interestingly, after LPS stimulation, DHT exposure showed an additional effect, markedly increasing the P2X7R gene expression. This amplificatory effect was confirmed by the incubation of adipocytes to both anastrozole and testosterone. In these experimental conditions, while no effect was observed at baseline, an amplification of the expression of the P2X7R mRNA was observed after stimulation with LPS. Discussion: The purinergic system is involved in the inflammatory response of adipocytes, and androgens may modulate its activity. In particular DHT, a non-aromatizable androgen, amplifies the LPS-induced P2X7R gene expression in human adipocytes thus showing a gender regulated response of the expression of this purinergic receptor strongly involved in the inflammatory response in adipose tissue.

5.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762628

RESUMO

Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.


Assuntos
Processamento Alternativo , Diabetes Mellitus Tipo 2 , Humanos , Adipócitos , Peptídeo 1 Semelhante ao Glucagon/genética , Glucose
6.
J Nutr Biochem ; 119: 109385, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230255

RESUMO

Brown/beige adipocytes express uncoupling protein-1 (UCP1) that enables them to dissipate energy as heat. Systematic activation of this process can alleviate obesity. Human brown adipose tissues are interspersed in distinct anatomical regions including deep neck. We found that UCP1 enriched adipocytes differentiated from precursors of this depot highly expressed ThTr2 transporter of thiamine and consumed thiamine during thermogenic activation of these adipocytes by cAMP which mimics adrenergic stimulation. Inhibition of ThTr2 led to lower thiamine consumption with decreased proton leak respiration reflecting reduced uncoupling. In the absence of thiamine, cAMP-induced uncoupling was diminished but restored by thiamine addition reaching the highest levels at thiamine concentrations larger than present in human blood plasma. Thiamine is converted to thiamine pyrophosphate (TPP) in cells; the addition of TPP to permeabilized adipocytes increased uncoupling fueled by TPP-dependent pyruvate dehydrogenase. ThTr2 inhibition also hampered cAMP-dependent induction of UCP1, PGC1a, and other browning marker genes, and thermogenic induction of these genes was potentiated by thiamine in a concentration-dependent manner. Our study reveals the importance of amply supplied thiamine during thermogenic activation in human adipocytes which provides TPP for TPP-dependent enzymes not fully saturated with this cofactor and by potentiating the induction of thermogenic genes.


Assuntos
Adipócitos Marrons , Tiamina , Humanos , Tecido Adiposo Marrom , Proteínas de Membrana Transportadoras , Diferenciação Celular , Termogênese/genética , Proteína Desacopladora 1/genética
7.
BMC Med ; 21(1): 154, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076885

RESUMO

BACKGROUND: Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the relevant impact of obesity status pre and post bariatric surgery. METHODS: Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels. RESULTS: Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin negatively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001). CONCLUSIONS: Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Endotoxemia , Humanos , Endotoxemia/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Lipopolissacarídeos , Endotoxinas/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36642213

RESUMO

The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes. The RNA-seq analysis revealed that differentiated adipocytes express high amounts of ADORA1, P2RY11, P2RY12, and P2RX6 gene transcripts, along with abundant levels of transcriptional products encoding to purine metabolizing enzymes (ENPP2, ENPP1, NT5E, ADA and ADK) and transporters (SLC29A1, SCL29A2). The transcriptomics of purinergic signaling markers changed in parallel to the upsurge of "browning" adipocyte markers, like UCP1 and P2RX5, after treatment with T3 and irisin. Upregulation of ADORA1, ADORA2A and P2RX4 gene transcription was obtained with irisin, whereas T3 preferentially upregulated NT5E, SLC29A2 and P2RY11 genes. Irisin was more powerful than T3 towards inhibition of the leptin gene transcription, the SCL29A1 gene encoding for the ENT1 transporter, the E-NPP2 (autotaxin) gene, and genes that encode for two ADP-sensitive P2Y receptors, P2RY1 and P2RY12. These findings indicate that anti-obesity irisin and T3 hormones differentially affect the purinergic signaling transcriptomics, which might point towards new directions for the treatment of obesity and related metabolic disorders that are worth to be pursued in future functional studies.


Assuntos
Fibronectinas , Transcriptoma , Tri-Iodotironina , Humanos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo
9.
Front Cell Dev Biol ; 10: 983899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340033

RESUMO

Abdominal obesity associates with cardiometabolic disease and an accumulation of lipids in the visceral adipose depot, whereas lipid accumulation in the subcutaneous depot is more benign. We aimed to further investigate whether the adipogenic properties where cell-intrinsic, or dependent on a depot-specific or obesity-produced microenvironment. We obtained visceral and subcutaneous biopsies from non-obese women (n = 14) or women living with morbid obesity (n = 14) and isolated adipose stem and progenitor cells (ASPCs) from the stromal vascular fraction of non-obese (n = 13) and obese (n = 13). Following in vitro differentiation into mature adipocytes, we observed a contrasting pattern with a lower gene expression of adipogenic markers and a higher gene expression of immunogenic markers in the visceral compared to the subcutaneous adipocytes. We identified the immunogenic factor BST2 as a marker for visceral ASPCs. The effect of obesity and insulin resistance on adipogenic and immunogenic markers in the in vitro differentiated cells was minor. In contrast, differentiation with exogenous Tumor necrosis factor resulted in increased immunogenic signatures, including increased expression of BST2, and decreased adipogenic signatures in cells from both depots. Our data, from 26 women, underscore the intrinsic differences between human visceral and subcutaneous adipose stem and progenitor cells, suggest that dysregulation of adipocytes in obesity mainly occurs at a post-progenitor stage, and highlight an inflammatory microenvironment as a major constraint of human adipogenesis.

10.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234761

RESUMO

Benzylamine is a natural molecule present in food and edible plants, capable of activating hexose uptake and inhibiting lipolysis in human fat cells. These effects are dependent on its oxidation by amine oxidases present in adipocytes, and on the subsequent hydrogen peroxide production, known to exhibit insulin-like actions. Virtually, other substrates interacting with such hydrogen peroxide-releasing enzymes potentially can modulate lipid accumulation in adipose tissue. Inhibition of such enzymes has also been reported to influence lipid deposition. We have therefore studied in human adipocytes the lipolytic and lipogenic activities of pharmacological entities designed to interact with amine oxidases highly expressed in this cell type: the semicarbazide-sensitive amine oxidase (SSAO also known as PrAO or VAP-1) and the monoamine oxidases (MAO). The results showed that SZV-2016 and SZV-2017 behaved as better substrates than benzylamine, releasing hydrogen peroxide once oxidized, and reproduced or even exceeded its insulin-like metabolic effects in fat cells. Additionally, several novel SSAO inhibitors, such as SZV-2007 and SZV-1398, have been evidenced and shown to inhibit benzylamine metabolic actions. Taken as a whole, our findings reinforce the list of molecules that influence the regulation of triacylglycerol assembly/breakdown, at least in vitro in human adipocytes. The novel compounds deserve deeper investigation of their mechanisms of interaction with SSAO or MAO, and constitute potential candidates for therapeutic use in obesity and diabetes.


Assuntos
Amina Oxidase (contendo Cobre) , Adipócitos , Amina Oxidase (contendo Cobre)/metabolismo , Benzilaminas/metabolismo , Benzilaminas/farmacologia , Glucose/metabolismo , Hexoses/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Insulina/metabolismo , Lipídeos/farmacologia , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Triglicerídeos/metabolismo
11.
Cells ; 11(15)2022 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892579

RESUMO

It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling pathways induced by hypoxia and pollutants may crosstalk, as they share a common transcription factor: aryl hydrocarbon receptor nuclear translocator (ARNT). Whether hypoxia and PCBs crosstalk and affect adipokine secretion in human adipocytes remains to be explored. Using primary human adipocytes acutely co-exposed to different levels of hypoxia (24 h) and PCB126 (48 h), we observed that hypoxia significantly inhibits the PCB126 induction of cytochrome P450 (CYP1A1) transcription in a dose-response manner, and that Acriflavine (ACF)-an HIF1α inhibitor-partially restores the PCB126 induction of CYP1A1 under hypoxia. On the other hand, exposure to PCB126 did not affect the transcription of the vascular endothelial growth factor-A (VEGFA) under hypoxia. Exposure to hypoxia increased leptin and interleukin-6 (IL-6), and decreased adiponectin levels dose-dependently, while PCB126 increased IL-6 and IL-8 secretion in a dose-dependent manner. Co-exposure to PCB126 and hypoxia did not alter the adipokine secretion pattern observed under hypoxia and PCB126 exposure alone. In conclusion, our results indicate that (1) hypoxia inhibits PCB126-induced CYP1A1 expression at least partly through ARNT-dependent means, suggesting that hypoxia could affect PCB metabolism and toxicity in adipose tissue, and (2) hypoxia and PCB126 affect leptin, adiponectin, IL-6 and IL-8 secretion differently, with no apparent crosstalk between the two factors.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Adipócitos/metabolismo , Adipocinas/metabolismo , Adiponectina/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Poluentes Ambientais/toxicidade , Humanos , Hipóxia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leptina/metabolismo , Bifenilos Policlorados/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35739994

RESUMO

Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.

13.
Exp Gerontol ; 163: 111798, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390489

RESUMO

Hypertrophy in white adipose tissue (WAT) can result in sustained systemic inflammation, hyperlipidaemia, insulin resistance, and onset of senescence in adipocytes. Inflammation and hypertrophy can be induced in vitro using palmitic acid (PA). WAT adipocytes have innately low ß-oxidation capacity, while inorganic nitrate can promote a beiging phenotype, with promotion of ß-oxidation when cells are exposed to nitrate during differentiation. We hypothesized that treatment of human adipocytes with PA in vitro can induce senescence, which might be attenuated by nitrate treatment through stimulation of ß-oxidation to remove accumulated lipids. Differentiated subcutaneous and omental adipocytes were treated with PA and nitrate and senescence markers were analyzed. PA induced DNA damage and increased p16INK4a levels in both human subcutaneous and omental adipocytes in vitro. However, lipid accumulation and lipid droplet size increased after PA treatment only in subcutaneous adipocytes. Thus, hypertrophy and senescence seem not to be causally associated. Contrary to our expectations, subsequent treatment of PA-induced adipocytes with nitrate did not attenuate PA-induced lipid accumulation or senescence. Instead, we found a significantly beneficial effect of oleic acid (OA) on human subcutaneous adipocytes when applied together with PA, which reduced the DNA damage caused by PA treatment.


Assuntos
Nitratos , Ácido Oleico , Adipócitos , Dano ao DNA , Humanos , Hipertrofia , Inflamação , Nitratos/farmacologia , Ácido Oleico/farmacologia , Palmitatos/farmacologia
14.
Toxicology ; 470: 153153, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35301059

RESUMO

Obesity is considered as a major public health concern with strong economic and social burdens. Exposure to pollutants such as heavy metals can contribute to the development of obesity and its associated metabolic disorders, including type 2 diabetes and cardiovascular diseases. Adipose tissue is an endocrine and paracrine organ that plays a key role in the development of these diseases and is one of the main target of heavy metal accumulation. In this study, we determined by inductively coupled plasma mass spectrometry cadmium concentrations in human subcutaneous and visceral adipose tissues, ranging between 2.5 nM and 2.5 µM. We found a positive correlation between cadmium levels and age, sex and smoking status and a negative correlation between cadmium and body mass index. Based on cadmium adipose tissue concentrations found in humans, we investigated the effects of cadmium exposure, at concentrations between 1 nM and 10 µM, on adipose-derived human mesenchymal stem cells differentiated into mature adipocytes in vitro. Transcriptomic analysis highlighted that such exposure altered the expression of genes involved in trace element homeostasis and heavy metal detoxification, such as Solute Carrier Family transporters and metallothioneins. This effect correlated with zinc level alteration in cells and cellular media. Interestingly, dysregulation of zinc homeostasis and transporters has been particularly associated with the development of obesity and type 2 diabetes. Moreover, we found that cadmium exposure induces the pro-inflammatory state of the adipocytes by enhancing the expression of genes such as IL-6, IL-1B and CCL2, cytokines also induced in obesity. Finally, cadmium modulates various adipocyte functions such as the insulin response signaling pathway and lipid homeostasis. Collectively, our data identified some of the cellular mechanisms by which cadmium alters adipocyte functions, thus highlighting new facets of its potential contribution to the progression of metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Cádmio/toxicidade , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/metabolismo , Obesidade/induzido quimicamente , Obesidade/genética , Transcriptoma , Zinco/metabolismo
15.
World J Diabetes ; 13(1): 37-53, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35070058

RESUMO

BACKGROUND: When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes. AIM: To test whether catecholamines activate glucose transport in human adipocytes. METHODS: The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine). RESULTS: In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake. CONCLUSION: High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.

16.
Biochim Biophys Acta Biomembr ; 1864(1): 183795, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627746

RESUMO

Aquaporins play a crucial role in water homeostasis in the human body, and recently the physiological importance of aquaporins as glycerol channels have been demonstrated. The aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) represent key glycerol channels, enabling glycerol flux across the membranes of cells. Adipocytes are the major source of glycerol and during lipolysis, glycerol is released to be metabolized by other tissues through a well-orchestrated process. Here we show that both AQP3 and AQP7 bind to the lipid droplet protein perilipin 1 (PLIN1), suggesting that PLIN1 is involved in the coordination of the subcellular translocation of aquaglyceroporins in human adipocytes. Moreover, in addition to aquaglyceroporins, we discovered by transcriptome sequencing that AQP1 is expressed in human primary adipocytes. AQP1 is mainly a water channel and thus is thought to be involved in the response to hyper-osmotic stress by efflux of water during hyperglycemia. Thus, this data suggests a contribution of both orthodox aquaporin and aquaglyceroporin in human adipocytes to maintain the homeostasis of glycerol and water during fasting and feeding.


Assuntos
Aquaporina 1/genética , Aquaporina 3/genética , Aquaporinas/genética , Hiperglicemia/genética , Perilipina-1/genética , Adipócitos/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Regulação da Expressão Gênica/genética , Glicerol/metabolismo , Homeostase/genética , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Transcriptoma/genética , Água/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638889

RESUMO

The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obesity, among many others. Previously, our group demonstrated that adipogenesis per se, from mesenchymal/stromal stem cells derived from human adipose tissue (hASCs), involves an accumulation of DNA damage and a gradual loss of the repair capacity of oxidative DNA damage. Therefore, our objective was to identify whether healthy adipocytes differentiated for the first time from hASCs, when receiving inflammatory signals induced with TNFα, were able to persistently activate the DNA Damage Response and thus trigger adipocyte dysfunction. We found that TNFα at similar levels circulating in obese humans induce a sustained response to DNA damage response as part of the Senescence-Associated Secretory Phenotype. This mechanism shows the impact of inflammatory environment early affect adipocyte function, independently of aging.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Dano ao DNA , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa/métodos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
19.
Exp Biol Med (Maywood) ; 246(2): 163-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045853

RESUMO

Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catequina/análogos & derivados , Kisspeptinas/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Triglicerídeos/sangue , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adiponectina/sangue , Adulto , Glicemia/metabolismo , Catequina/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Leptina/sangue , Lipólise , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pessoa de Meia-Idade , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-33042008

RESUMO

New treatments for obesity and associated metabolic disease are increasingly warranted with the growth of the obesity pandemic. Brown adipose tissue (BAT) may represent a promising therapeutic target to treat obesity, as this tissue has been shown to regulate energy expenditure through non-shivering thermogenesis. Three different strategies could be employed for therapeutic targeting of human thermogenic adipocytes: increasing BAT mass through stimulation of BAT progenitors, increasing BAT function through regulatory pathways, and increasing WAT browning through promotion of beige adipocyte formation. However, these strategies require deeper understanding of human brown and beige adipocytes. While murine studies have greatly increased our understanding of BAT, it is becoming clear that human BAT does not exactly resemble that of the mouse, highlighting the need for human in vitro models of brown adipocytes. Several different human brown adipocyte models will be discussed here, along with the potential to improve brown adipocyte culture through recreation of the BAT microenvironment.


Assuntos
Adipócitos Marrons/fisiologia , Tecido Adiposo Marrom/fisiologia , Metabolismo Energético/fisiologia , Termogênese/fisiologia , Humanos , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...