Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurochem ; 168(8): 1514-1526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38485468

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.


Assuntos
Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo , Proteínas Associadas aos Microtúbulos , Neurogênese , Neuropeptídeos , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Hipocampo/metabolismo , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/biossíntese , Idoso , Proteínas Associadas aos Microtúbulos/metabolismo , Feminino , Neurogênese/fisiologia , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade
2.
Mem. Inst. Oswaldo Cruz ; 118: e230033, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448703

RESUMO

BACKGROUND Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.

3.
Exp Neurol ; 356: 114148, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732217

RESUMO

The therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans. A proteomic analysis of human brain organoids showed that LSD affected metabolic pathways associated with neural plasticity, including mTOR. To gain insight into the relation of neural plasticity, aging and LSD-induced cognitive gains, we emulated the experiments in rats and humans with a neural network model of a cortico-hippocampal circuit. Using the baseline strength of plasticity as a proxy for age and assuming an increase in plasticity strength related to LSD dose, the simulations provided a good fit for the experimental data. Altogether, the results suggest that LSD has nootropic effects.


Assuntos
Alucinógenos , Nootrópicos , Animais , Alucinógenos/toxicidade , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Proteômica , Ratos , Serina-Treonina Quinases TOR
4.
Front Immunol ; 13: 810376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185902

RESUMO

Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Endotélio Vascular/virologia , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/genética , Endotélio Vascular/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
5.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946949

RESUMO

DNA methylation and histone posttranslational modifications are epigenetics processes that contribute to neurophenotype of Down Syndrome (DS). Previous reports present strong evidence that nonhistone high-mobility-group N proteins (HMGN) are epigenetic regulators. They play important functions in various process to maintain homeostasis in the brain. We aimed to analyze the differential expression of five human HMGN genes in some brain structures and age ranks from DS postmortem brain samples. Methodology: We performed a computational analysis of the expression of human HMGN from the data of a DNA microarray experiment (GEO database ID GSE59630). Using the transformed log2 data, we analyzed the differential expression of five HMGN genes in several brain areas associated with cognition in patients with DS. Moreover, using information from different genome databases, we explored the co-expression and protein interactions of HMNGs with the histones of nucleosome core particle and linker H1 histone. Results: We registered that HMGN1 and HMGN5 were significantly overexpressed in the hippocampus and areas of prefrontal cortex including DFC, OFC, and VFC of DS patients. Age-rank comparisons between euploid control and DS individuals showed that HMGN2 and HMGN4 were overexpressed in the DS brain at 16 to 22 gestation weeks. From the BioGRID database, we registered high interaction scores of HMGN2 and HMGN4 with Hist1H1A and Hist1H3A. Conclusions: Overall, our results give strong evidence to propose that DS would be an epigenetics-based aneuploidy. Remodeling brain chromatin by HMGN1 and HMGN5 would be an essential pathway in the modification of brain homeostasis in DS.


Assuntos
Cognição/fisiologia , Síndrome de Down/genética , Proteínas HMGN/genética , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Bases de Dados Genéticas , Síndrome de Down/metabolismo , Epigênese Genética/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Proteínas HMGN/metabolismo , Proteína HMGN1/genética , Proteína HMGN2/genética , Hipocampo/metabolismo , Humanos , Nucleossomos/genética , Córtex Pré-Frontal/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Transcriptoma/genética
6.
Front Neurosci ; 15: 674576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887719

RESUMO

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

7.
Int J Neuropsychopharmacol ; 24(12): 935-947, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214149

RESUMO

BACKGROUND: Suicide represents a major health concern, especially in developing countries. While many demographic risk factors have been proposed, the underlying molecular pathology of suicide remains poorly understood. A body of evidence suggests that aberrant DNA methylation and expression is involved. In this study, we examined DNA methylation profiles and concordant gene expression changes in the prefrontal cortex of Mexicans who died by suicide. METHODS: In collaboration with the coroner's office in Mexico City, brain samples of males who died by suicide (n = 35) and age-matched sudden death controls (n = 13) were collected. DNA and RNA were extracted from prefrontal cortex tissue and analyzed with the Infinium Methylation480k and the HumanHT-12 v4 Expression Beadchips, respectively. RESULTS: We report evidence of altered DNA methylation profiles at 4430 genomic regions together with 622 genes characterized by differential expression in cases vs controls. Seventy genes were found to have concordant methylation and expression changes. Metacore-enriched analysis identified 10 genes with biological relevance to psychiatric phenotypes and suicide (ADCY9, CRH, NFATC4, ABCC8, HMGA1, KAT2A, EPHA2, TRRAP, CD22, and CBLN1) and highlighted the association that ADCY9 has with various pathways, including signal transduction regulated by the cAMP-responsive element modulator, neurophysiological process regulated by the corticotrophin-releasing hormone, and synaptic plasticity. We therefore went on to validate the observed hypomethylation of ADCY9 in cases vs control through targeted bisulfite sequencing. CONCLUSION: Our study represents the first, to our knowledge, analysis of DNA methylation and gene expression associated with suicide in a Mexican population using postmortem brain, providing novel insights for convergent molecular alterations associated with suicide.


Assuntos
Metilação de DNA , Expressão Gênica , Córtex Pré-Frontal/metabolismo , Suicídio , Adulto , Estudos de Casos e Controles , Epigênese Genética , Humanos , Masculino , México
8.
Front Synaptic Neurosci ; 13: 769228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087390

RESUMO

The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted "single-section" Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32733229

RESUMO

The human cingulate cortex (CC), included in the paralimbic cortex, participates in emotion, visceral responses, attention, cognition, and social behaviors. The CC has spindle-shaped/fusiform cell body neurons in its layer V, the von Economo neurons (VENs). VENs have further developed in primates, and the characterization of human VENs can benefit from the detailed descriptions of the shape of dendrites and spines. Here, we advance this issue and studied VENs in the anterior and midcingulate cortex from four neurologically normal adult subjects. We used the thionin technique and the adapted "single-section" Golgi method for light microscopy. Three-dimensional (3D) reconstructions were carried out for the visualization of Golgi-impregnated VENs' cell body, ascending and descending dendrites, and collateral branches. We also looked for the presence, density, and shape of spines from proximal to distal dendrites. These neurons have a similar aspect for the soma, but features of spiny dendrites evidenced a morphological heterogeneity of CC VENs. Only for the description of this continuum of shapes, we labeled the most common feature as VEN 1, which has main dendritic shafts but few branches and sparse spines. VEN 2 shows an intermediate aspect, whereas VEN 3 displays the most profuse dendritic ramification and more spines with varied shapes from proximal to distal branches. Morphometric data exemplify the dendritic features of these cells. The heterogeneity of the dendritic architecture and spines suggests additional functional implications for the synaptic and information processing in VENs in integrated networks of normal and, possibly, neurological/psychiatric conditions involving the human CC.

10.
Biol Res ; 53(1): 27, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616043

RESUMO

BACKGROUND: Circular RNA (circRNA) is highly expressed in the brain tissue, but its molecular mechanism in cerebral ischemia-reperfusion remains unclear. Here, we explored the role and underlying mechanisms of circRNA antisense non-coding RNA in the INK4 locus (circ_ANRIL) in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell injury. RESULTS: The expression of circ_ANRIL in OGD/R-induced human brain microvascular endothelial cells (HBMECs) was significantly up-regulated, while that of miR-622 was significantly down-regulated. Overexpression of circ_ANRIL significantly inhibited the proliferation of OGD/R-induced HBMECs and aggravated OGD/R-induced cell apoptosis. Moreover, circ_ANRIL overexpression further increased the secretion of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in OGD/R-treated HBMECs. The results of bioinformatics analysis and luciferase reporter assay indicated that circ_ANRIL served as an miR-622 sponge to negatively regulate the expression of miR-622 in OGD/R-treated HBMECs. Additionally, circ_ANRIL silencing exerted anti-apoptotic and anti-inflammatory effects by positively regulating the expression of miR-622. Furthermore, inhibition of OGD/R-induced activation of the nuclear factor (NF)-κB pathway by circ_ANRIL silencing was significantly reversed by treatment with miR-622 inhibitor. CONCLUSIONS: Knockdown of circ_ANRIL improved OGD/R-induced cell damage, apoptosis, and inflammatory responses by inhibiting the NF-κB pathway through sponging miR-622.


Assuntos
Hipóxia Encefálica , MicroRNAs , RNA Circular , Traumatismo por Reperfusão , Apoptose , Encéfalo , Inibidor p16 de Quinase Dependente de Ciclina , Células Endoteliais , Glucose/metabolismo , Humanos , Hipóxia Encefálica/metabolismo , Inflamação , MicroRNAs/genética , MicroRNAs/fisiologia , Oxigênio , RNA Longo não Codificante , Traumatismo por Reperfusão/metabolismo
11.
J Alzheimers Dis ; 73(4): 1627-1635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31958088

RESUMO

Genetic predispositions associated with metabolism of the amyloid-ß protein precursor underlie familial Alzheimer's disease; a form of dementia characterized by early disease onset and elevated levels of cortical amyloid-ß. Human exposure to aluminum is linked to the etiology of Alzheimer's disease and recent research measured a high content of aluminum in brain tissue in familial Alzheimer's disease. To elaborate upon this finding, we have obtained brain tissues from a Colombian cohort of donors with familial Alzheimer's disease. We have used established methods to measure the aluminum content of these tissues and we have compared the data with a recently measured dataset for control brain tissues. We report significantly higher levels of aluminum in brain tissues in donors with familial Alzheimer's disease than in control tissues from donors without neurological impairment or neurodegeneration. We have used aluminum-specific fluorescence microscopy along with complementary imaging for amyloid-ß to demonstrate a very high degree of co-localization of these two risk factors in brain tissue in familial Alzheimer's disease. Aluminum and amyloid-ß were co-located in senile plaques as well as vasculature, the latter resembling cerebral amyloid angiopathy. Aluminum was also found separately from amyloid-ß in intracellular compartments including glia and neuronal axons. The research has identified an arguably unique association between high brain aluminum content and amyloid-ß and allows postulation that genetic predispositions defining familial Alzheimer's disease underlie this relationship.


Assuntos
Alumínio/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Axônios/metabolismo , Química Encefálica , Angiopatia Amiloide Cerebral/metabolismo , Estudos de Coortes , Colômbia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neuroglia/metabolismo , Placa Amiloide/metabolismo , Fatores de Risco
12.
Mol Neurobiol ; 57(3): 1473-1483, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760608

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AßOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AßOs to neurons and were protected against AßO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AßOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.


Assuntos
Adenoviridae/patogenicidade , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Transtornos da Memória/prevenção & controle , Adenoviridae/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/virologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
13.
Biol. Res ; 53: 27, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1124212

RESUMO

BACKGROUND: Circular RNA (circRNA) is highly expressed in the brain tissue, but its molecular mechanism in cerebral ischemia-reperfusion remains unclear. Here, we explored the role and underlying mechanisms of circRNA antisense non-coding RNA in the INK4 locus (circ_ANRIL) in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell injury. RESULTS: The expression of circ_ANRIL in OGD/R-induced human brain microvascular endothelial cells (HBMECs) was significantly up-regulated, while that of miR-622 was significantly down-regulated. Overexpression of circ_ANRIL significantly inhibited the proliferation of OGD/R-induced HBMECs and aggravated OGD/R-induced cell apoptosis. Moreover, circ_ANRIL overexpression further increased the secretion of interleukin (IL)-1ß, IL-6, tumor necrosis factor-a, and monocyte chemoattractant protein-1 in OGD/R-treated HBMECs. The results of bioinformatics analysis and luciferase reporter assay indicated that circ_ANRIL served as an miR-622 sponge to negatively regulate the expression of miR-622 in OGD/R-treated HBMECs. Additionally, circ_ANRIL silencing exerted anti-apoptotic and anti-inflammatory effects by positively regulating the expression of miR-622. Furthermore, inhibition of OGD/R-induced activation of the nuclear factor (NF)-kB pathway by circ_ANRIL silencing was significantly reversed by treatment with miR-622 inhibitor. CONCLUSIONS: Knockdown of circ_ANRIL improved OGD/R-induced cell damage, apoptosis, and inflammatory responses by inhibiting the NF-κB pathway through sponging miR-622.


Assuntos
Humanos , Traumatismo por Reperfusão/metabolismo , Hipóxia Encefálica/metabolismo , MicroRNAs/fisiologia , MicroRNAs/genética , RNA Circular , Oxigênio , Encéfalo , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina , Células Endoteliais , RNA Longo não Codificante , Glucose/metabolismo , Inflamação
14.
DNA Cell Biol ; 38(9): 955-961, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31361513

RESUMO

The chromatin-remodeling complex ATRX/DAXX is one of the major epigenetic factors that controls heterochromatin maintenance due to its role in histone deposition. ATRX is involved in nucleosome configuration and maintenance of higher order chromatin structure, and DAXX is a specific histone chaperone for H3.3 deposition. Dysfunctions in this complex have been associated with telomere shortening, which influences cell senescence. However, data about this complex in brain tissue related to aging are still scarce. Therefore, in the present study, we analyzed ATRX and DAXX expressions in autopsied human brain specimens and the telomere length. A significant decrease in gene and protein expressions was observed in the brain tissues from the elderly compared with those from the young, which were related to short telomeres. These findings may motivate further functional analysis to confirm the ATRX-DAXX complex involvement in telomere maintenance and brain aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento/genética , Encéfalo/metabolismo , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/crescimento & desenvolvimento , Proteínas Correpressoras , Humanos , Pessoa de Meia-Idade , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Homeostase do Telômero , Proteína Nuclear Ligada ao X/metabolismo
15.
Viruses ; 11(2)2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769824

RESUMO

The Zika virus (ZIKV) was first isolated in Africa in 1947. It was shown to be a mild virus that had limited threat to humans. However, the resurgence of the ZIKV in the most recent Brazil outbreak surprised us because it causes severe human congenital and neurologic disorders including microcephaly in newborns and Guillain-Barré syndrome in adults. Studies showed that the epidemic ZIKV strains are phenotypically different from the historic strains, suggesting that the epidemic ZIKV has acquired mutations associated with the altered viral pathogenicity. However, what genetic changes are responsible for the changed viral pathogenicity remains largely unknown. One of our early studies suggested that the ZIKV structural proteins contribute in part to the observed virologic differences. The objectives of this study were to compare the historic African MR766 ZIKV strain with two epidemic Brazilian strains (BR15 and ICD) for their abilities to initiate viral infection and to confer neurocytopathic effects in the human brain's SNB-19 glial cells, and further to determine which part of the ZIKV structural proteins are responsible for the observed differences. Our results show that the historic African (MR766) and epidemic Brazilian (BR15 and ICD) ZIKV strains are different in viral attachment to host neuronal cells, viral permissiveness and replication, as well as in the induction of cytopathic effects. The analysis of chimeric viruses, generated between the MR766 and BR15 molecular clones, suggests that the ZIKV E protein correlates with the viral attachment, and the C-prM region contributes to the permissiveness and ZIKV-induced cytopathic effects. The expression of adenoviruses, expressing prM and its processed protein products, shows that the prM protein and its cleaved Pr product, but not the mature M protein, induces apoptotic cell death in the SNB-19 cells. We found that the Pr region, which resides on the N-terminal side of prM protein, is responsible for prM-induced apoptotic cell death. Mutational analysis further identified four amino-acid residues that have an impact on the ability of prM to induce apoptosis. Together, the results of this study show that the difference of ZIKV-mediated viral pathogenicity, between the historic and epidemic strains, contributed in part the functions of the structural prM-E proteins.


Assuntos
Neuroglia/virologia , Proteínas do Envelope Viral/genética , Ligação Viral , Infecção por Zika virus/patologia , Zika virus/patogenicidade , África , Apoptose , Encéfalo/citologia , Encéfalo/virologia , Brasil , Surtos de Doenças , Epidemias , Humanos , Mutação , Neuroglia/imunologia , Replicação Viral , Zika virus/classificação
16.
Brain Struct Funct ; 224(1): 191-203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30298291

RESUMO

Neurobiological models have provided consistent evidence of the involvement of cortical-subcortical circuitry in obsessive-compulsive disorder (OCD). The orbitofrontal cortex (OFC), involved in motivation and emotional responses, is an important regulatory node within this circuitry. However, OFC abnormalities at the cellular level have so far not been studied. To address this question, we have recruited a total of seven senior individuals from the Sao Paulo Autopsy Services who were diagnosed with OCD after an extensive post-mortem clinical evaluation with their next of kin. Patients with cognitive impairment were excluded. The OCD cases were age- and sex-matched with 7 control cases and a total of 14 formalin-fixed, serially cut, and gallocyanin-stained hemispheres (7 subjects with OCD and 7 controls) were analyzed stereologically. We estimated laminar neuronal density, volume of the anteromedial (AM), medial orbitofrontal (MO), and anterolateral (AL) areas of the OFC. We found statistically significant layer- and region-specific lower neuron densities in our OCD cases that added to a deficit of 25% in AM and AL and to a deficit of 21% in MO, respectively. The volumes of the OFC areas were similar between the OCD and control groups. These results provide evidence of complex layer and region-specific neuronal deficits/loss in old OCD cases which could have a considerable impact on information processing within orbitofrontal regions and with afferent and efferent targets.


Assuntos
Envelhecimento/patologia , Neurônios/patologia , Transtorno Obsessivo-Compulsivo/patologia , Córtex Pré-Frontal/patologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Brasil , Estudos de Casos e Controles , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia , Córtex Pré-Frontal/fisiopatologia
17.
J Neurosci Methods ; 307: 203-209, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859877

RESUMO

BACKGROUND: Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD: We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 µm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aß oligomers (AßOs) to cultured slices was also analyzed. RESULTS: Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AßOs. We further found that slices exposed to AßOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S): Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS: Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AßO neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Adulto , Análise de Variância , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , Cloreto de Potássio/farmacologia , Proteínas tau/metabolismo
18.
J Neurosci Methods ; 293: 27-36, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887132

RESUMO

BACKGROUND: Different approaches aim to unravel detailed morphological features of neural cells. Dendritic spines are multifunctional units that reflect cellular connectivity, synaptic strength and plasticity. NEW METHOD: A novel three-dimensional (3D) reconstruction procedure is introduced for visualization of dendritic spines from human postmortem brain tissue using brightfield microscopy. The segmentation model was based on thresholding the intensity values of the dendritic spine image along 'z' stacks. We used median filtering and removed false positives. Fine adjustments during image processing confirmed that the reconstructed image of the spines corresponded to the actual original data. RESULTS: Examples are shown for the cortical amygdaloid nucleus and the CA3 hippocampal area. Structure of spine heads and necks was evaluated at different angles. Our 3D reconstruction images display dendritic spines either isolated or in clusters, in a continuum of shapes and sizes, from simple to more elaborated forms, including the presence of spinule and complex 'thorny excrescences'. COMPARISON WITH EXISTING METHODS: The procedure has the advantages already described for the adapted "single-section" Golgi method, since it provides suitable results using human brains fixed in formalin for long time, is relatively easy, requires minimal equipment, and uses an algorithm for 3D reconstruction that provides high quality images and more precise morphological data. CONCLUSION: The procedure described here allows the reliable visualization and study of human dendritic spines with broad applications for normal controls and pathological studies.


Assuntos
Espinhas Dendríticas , Imageamento Tridimensional/métodos , Microscopia/métodos , Coloração pela Prata , Idoso , Humanos , Masculino , Software , Lobo Temporal/citologia
19.
Rev. ecuat. neurol ; Rev. ecuat. neurol;26(1): 53-60, ene.-abr. 2017. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1099135

RESUMO

Resumen En este artÌculo se presentan tres conceptos que son fundamentales en la formaciÛn teÛrica neuropsicolÛgica: datos histÛricos en el estudio del cerebro humano, evaluaciÛn neuropsicolÛgica de las funciones cerebrales y la rehabilitaciÛn neuropsicolÛgica de las funciones cerebrales. Como datos relevantes en el desarrollo teÛrico del estudio del cerebro humano se hace un recorrido por los actos de trepanaciÛn realizados cientos de aÒos atr·s, los aportes de la frenologÌa, los magistrales hallazgos de Broca y Wernicke, el aporte heurÌstico de Luria y la revoluciÛn actual que se vive con la neuro-imagen. En la evaluaciÛn neuropsicolÛgica de funciones cerebrales se analiza el papel de las pruebas especÌficas, no especÌficas y de observaciÛn diferida en la interpretaciÛn del estado neuropsicolÛgico del ser humano, que permiten analizar las funciones neuropsicolÛgicas en el laboratorio y en las actividades de la vida real. Finalmente, se analiza el proceso de rehabilitaciÛn neuropsicolÛgica de las funciones cerebrales, en donde se hace menciÛn a los procesos de restauraciÛn, compensaciÛn, sustituciÛn, activaciÛn-estimulaciÛn e integraciÛn, que son de gran utilidad al momento de intervenir en un cerebro que ha sufrido un daÒo adquirido. Se concluye que el ritmo acelerado actual ha determinado el avance de la neurociencia, en donde la tecnologÌa y el contundente aporte cientÌfico proponen dÌa a dÌa nuevas tÈcnicas y teorÌas para entender los procesos de evaluaciÛn y rehabilitaciÛn del funcionamiento cerebral.


Abstract This article presents three concepts that are fundamental in the neuropsychological theoretical: historical data in the study of the human brain, neuropsychological evaluation of brain functions and neuropsychological rehabilitation of brain functions. As relevant data in the theoretical development of the study of the human brain is a tour of the trepanation acts performed hundreds of years ago, the contributions of phrenology, the masterful findings of Broca and Wernicke, the heuristic contribution of Luria and the current revolution with neuroimaging. In the neuropsychological evaluation of brain functions the role of specific, non-specific and delayed observation tests in the interpretation of the neuropsychological state of the human being is analyzed, which allow analyzing neuropsychological functions in the laboratory and in real life activities. Finally, we analyze the process of neuropsychological rehabilitation of brain functions, where mention is made of the processes of restoration, compensation, substitution, activation-stimulation and integration, which are very useful when intervening in a brain that has suffered an acquired damage. It is concluded that the current accelerated pace has determined the advance of neuroscience, where technology and the forceful scientific contribution propose new techniques and theories to understand the processes of evaluation and rehabilitation of brain functioning.

20.
Proteomics Clin Appl ; 9(9-10): 832-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059592

RESUMO

Neurodegenerative diseases (NDs), such as Alzheimer's disease and Parkinson's disease, are among the most debilitating neurological disorders, and as life expectancy rises quickly around the world, the scientific and clinical challenges of dealing with them will also increase dramatically, putting increased pressure on the biomedical community to come up with innovative solutions for the understanding, diagnosis, and treatment of these conditions. Despite several decades of intensive research, there is still little that can be done to prevent, cure, or even slow down the progression of NDs in most patients. There is an urgent need to develop new lines of basic and applied research that can be quickly translated into clinical application. One way to do this is to apply the tools of proteomics to well-characterized samples of human brain tissue, but a closer partnership must still be forged between proteomic scientists, brain banks, and clinicians to explore the maximum potential of this approach. Here, we analyze the challenges and potential benefits of using human brain tissue for proteomics research toward NDs.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA