Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(1): 40-49, 2019 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-30887775

RESUMO

In order to meet the requirements in the cooperation and competition experiments for an individual patient in clinical application, two human interactive behavior key-press models based on hidden Markov model (HMM) were proposed. To validate the cooperative and competitive models, a verification experimental task was designed and the data were collected. The correlation of the score and subjects' participation level has been used to analyze the reasonability verification. Behavior verification was conducted by comparing the statistical difference in response time for subjects between human-human and human-computer experiment. In order to verify the physiological validity of the models, we have utilized the coherence analysis to analyze the deep information of prefrontal brain area. Reasonability verification shows that the correlation coefficient for the training data and the testing data is 0.883 1 and 0.578 6 respectively based on cooperation model, and 0.813 1 and 0.617 8 respectively based on the competition model. The behavioral verification result shows that the cooperation and competition models have an accuracy of 71.43% respectively. The results of physiological validity show that the deep information of prefrontal brain area could been extracted based on the cooperation and competition models, and reveal the consistency of coherence between the double key-press cooperative and competitive experiments, respectively. Above all, the high consistency is obtained between the cooperatio/competition model and the double key-press experiment by the behavioral and physiological evaluation results. Consequently, the cooperation and competition models could be applied to clinical trials.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-773321

RESUMO

In order to meet the requirements in the cooperation and competition experiments for an individual patient in clinical application, two human interactive behavior key-press models based on hidden Markov model (HMM) were proposed. To validate the cooperative and competitive models, a verification experimental task was designed and the data were collected. The correlation of the score and subjects' participation level has been used to analyze the reasonability verification. Behavior verification was conducted by comparing the statistical difference in response time for subjects between human-human and human-computer experiment. In order to verify the physiological validity of the models, we have utilized the coherence analysis to analyze the deep information of prefrontal brain area. Reasonability verification shows that the correlation coefficient for the training data and the testing data is 0.883 1 and 0.578 6 respectively based on cooperation model, and 0.813 1 and 0.617 8 respectively based on the competition model. The behavioral verification result shows that the cooperation and competition models have an accuracy of 71.43% respectively. The results of physiological validity show that the deep information of prefrontal brain area could been extracted based on the cooperation and competition models, and reveal the consistency of coherence between the double key-press cooperative and competitive experiments, respectively. Above all, the high consistency is obtained between the cooperatio/competition model and the double key-press experiment by the behavioral and physiological evaluation results. Consequently, the cooperation and competition models could be applied to clinical trials.

3.
Brain Cogn ; 100: 1-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26432377

RESUMO

In humans, observation of others' behaviors increases corticospinal excitability (CSE), which is interpreted in the contexts of motor resonance and the "mirror neuron system" (MNS). It has been suggested that observation of another individual's behavior manifests an embodied simulation of his/her mental state through the MNS. Thus, the MNS may involve understanding others' intentions of behaviors, thoughts, and emotions (i.e., social cognition), and may therefore exhibit a greater response when observing human-interactive behaviors that require a more varied and complex understanding of others. In the present study, transcranial magnetic stimulation was applied to the primary motor cortex of participants observing human-interactive behaviors between two individuals (c.f. one person reaching toward an object in another person's hand) and non-interactive individual behavior (c.f. one person reaching toward an object on a dish). We carefully controlled the kinematics of behaviors in these two conditions to exclude potential effects of MNS activity changes associated with kinematic differences between visual stimuli. Notably, motor evoked potentials, that reflect CSE, from the first dorsal interosseous muscle exhibited greater amplitude when the participants observed interactive behaviors than when they observed non-interactive behavior. These results provide neurophysiological evidence that the MNS is activated to a greater degree during observation of human-interactive behaviors that contain additional information about the individuals' mental states, supporting the view that the MNS plays a critical role in social cognition in humans.


Assuntos
Potencial Evocado Motor/fisiologia , Neurônios-Espelho/fisiologia , Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Comportamento Social , Adulto , Emoções , Mãos/fisiologia , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...